研究论文

无机盐碘化钠光促炔烃双碘化

  • 鲁玲玲 ,
  • 李一鸣 ,
  • 姜雪峰
展开
  • a 华东师范大学化学与分子工程学院 上海市绿色化学与化工过程绿色化重点实验室 上海 200062;
    b 南开大学化学学院 元素有机化学国家重点实验室 天津 300071

收稿日期: 2020-05-23

  修回日期: 2020-06-26

  网络出版日期: 2020-07-17

基金资助

国家重点研发计划(No.2017YFD0200500)、国家自然科学基金(Nos.21971065,21722202,21672069)资助项目.

Visible-Light-Promoted Diiodination of Alkynes Using Sodium Iodide

  • Lu Lingling ,
  • Li Yiming ,
  • Jiang Xuefeng
Expand
  • a Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062;
    b State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071

Received date: 2020-05-23

  Revised date: 2020-06-26

  Online published: 2020-07-17

Supported by

Project supported by the National Key Research and Development Program of China (No. 2017YFD0200500), and the National Natural Science Foundation of China (Nos. 21971065, 21722202, 21672069).

摘要

1,2-双碘取代烯烃,因具有高度官能团衍生性,可作为多种杂环药物和有机共轭材料功能分子的合成前体.本工作以稳定易得的无机盐碘化钠作为碘源,空气作为氧化剂,仅仅在常温常压可见光(蓝光)照射下,即可将炔烃高选择性且方便地转化为反式1,2-双碘烯烃化合物.反应条件温和,试剂廉价易得,操作简便稳定,无需额外添加其他过渡金属催化剂或氧化试剂.同时,该法底物普适性优秀,端炔、内炔均适用,并且对于多种含杂原子与活性氢的肽或糖类结构也能优秀地兼容

本文引用格式

鲁玲玲 , 李一鸣 , 姜雪峰 . 无机盐碘化钠光促炔烃双碘化[J]. 有机化学, 2020 , 40(10) : 3354 -3361 . DOI: 10.6023/cjoc202005062

Abstract

1,2-Diiodoalkenes can be used as precursors for synthesis of functional molecules such as heterocyclic drugs and organic conjugated materials due to their derivability of functional groups. Herein, alkynes can be converted into 1,2-trans-diiodioalkenes efficiently and conveniently by using inexpensive and stable sodium iodide as iodine source and air as oxidant under the visible-light (blue light) with normal temperature and atmospheric pressure. The corresponding reactions were operated under mild conditions with inexpensive and easily accessible reagents, which obviate the need of transition-metal-catalysts or oxidizing reagents. Meanwhile, this method is compatible with a wide range of substrates, including terminal and internal alkynes even the peptide and carbohydrates containing a variety of heteroatoms and active hydrogen.

参考文献

[1] (a) Seechurn, C. C. J.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062.
(b) Piontek, A.; Bisz, E.; Szostak, M. Angew. Chem., Int. Ed. 2018, 57, 11116.
(c) King, A. O.; Yasuda, N. In Organometallics in Process Chemistry, Springer, Berlin, 2004, pp. 205~245.
(d) Ian, W. Ph.D. Dissertation, Durham University, Durham, 2011.
(e) Zeng, X.; Liu, S.; Yang, Y.; Yang, Yi; Hammond, G. B.; Xu, B. Chem 2020, 6, 1018.
[2] (a) Zani, L.; Dessì, A.; Franchi, D.; Calamante, M.; Reginato, G.; Mordini, A. Coord. Chem. Rev. 2019, 392, 177.
(b) Kawabata, K.; Saito, M.; Osaka, I.; Takimiya, K. J. Am. Chem. Soc. 2016, 138, 7725.
(c) Furukawa, S.; Yasuda, T. J. Mater. Chem. A 2019, 7, 14806.
(d) Chen, L.; Zeng, M.; Weng, C.; Tan, S.; Shen, P. ACS Appl. Mater. Interfaces 2019, 11, 48134.
(e) Tovar, J. D. Synthesis 2011, 2387.
(f) Olla, T.; Ibraikulov, O. A.; Ferry, S.; Boyron, O.; Méry, S.; Heinrich, B.; Heiser, T.; Lévêque, P.; Leclerc, N. Macromolecules 2019, 52, 8006.
[3] (a) Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J. Angew. Chem., Int. Ed. 2007, 46, 7744.
(b) Liu, C.; Chen, Z.; Su, C.; Zhao, X.; Gao, Q.; Ning, G.-H.; Zhu, H.; Tang, W.; Leng, K.; Fu, W.; Tian, B.; Peng, X.; Li, J.; Xu, Q.-H.; Zhou, W.; Loh, K. P. Nat. Commun. 2018, 9, 80.
[4] (a) Welch, M. J.; Redvanly, C. S. In The Hand Book of Radiopharmaceuticals: Radiochemistry and Applications, Ed.:Finn, R., Wiley, New York, 2003, p. 423.
(b) Hallouard, F.; Anton, N.; Choquet, P.; Constantinesco, A.; Vandamme, T. Biomaterials 2010, 31, 6249.
(c) Zimprich, F.; Rath, J.; Mauritz, M.; Zulehner, G.; Hilfer, Eva.; Cetin, H.; Kasprian, G.; Auff, E. J. Neurol. 2017, 264, 1209.
[5] (a) Gkotsi, D. S.; Ludewig, H.; Sharma, S. V.; Connolly, J. A.; Dhaliwal, J.; Wang, Y.; Unsworth, W. P.; Taylor, R. J. K.; McLachlan, M. M. W.; Shanahan, S.; Naismith, J. H.; Goss, R. J. M. Nat. Chem. 2019, 11, 1091.
(b) Butler, A.; Sandy, M. Nature 2009, 460, 848.
(c) Latham, J.; Brandenburger, E.; Shepherd, A.; Menon, B. R. K.; Micklefield, J. Chem. Rev. 2018, 118, 232.
[6] Li, Y.; Mou, T.; Lu, L.; Jiang, X. Chem. Commun., 2019, 55, 14299.
[7] (a) Banerjee, S.; Khatri, H.; Balasanthiran, V.; Koodali, R. T.; Sereda, G. Tetrahedron 2011, 67, 5717.
(b) Ranu, B. C.; Adak, L.; Chattopadhyay, K. J. Org. Chem. 2008, 73, 5609.
(c) Kimura, T.; Nishimura, Y.; Ishida, N.; Momochi, H.; Yamashita, H.; Satoh, T. Tetrahedron Lett. 2013, 54, 1049.
[8] (a) Bao, Y.; Yang, X.; Zhou, Q.; Yang, F. Org. Lett. 2018, 20, 1966.
(b) Lin, Y.; Lu, G.; Cai, C.; Yi, W. Org. Lett. 2015, 17, 3310.
[9] Li, J. H.; Tang, S. Synth. Commun. 2005, 35, 105.
[10] (a) Liang, Y.; Tao, L.-M.; Zhang, Y.-H.; Li, J.-H. Synthesis 2008, 3988.
(b) Raff, G.; Belot, S.; Balme, G.; Monteiro, N. Org. Biomol. Chem. 2011, 9, 1474.
[11] Schuh, K.; Glorius, F. Synthesis 2007, 2297.
[12] Shen, G.; Yang, B.; Huang, X.; Hou, Y.; Gao, H.; Cui, J.; Cui, C.; Zhang, T. J. Org. Chem. 2017, 82, 3798.
[13] Woodward, S.; Ackermann, M.; Ahirwar, S. K.; Burroughs, L.; Garrett, M. R.; Ritchie, J.; Shine, J.; Tyril, B.; Simpson, K.; Woodward, P. Chem. Eur. J. 2017, 3, 7819.
[14] (a) Sun, A.; Lauher, J. W.; Goroff, N. S. Science 2006, 312, 1030.
(b) DeCicco, R. C.; Luo, L.; Goroff, N. S. Acc. Chem. Res. 2019, 52, 2080.
[15] Terent'ev, A. O.; Borisov, D. A.; Krylov, I. B.; Nikishin, G. I. Synth. Commun. 2007, 37, 3151.
[16] (a) Dolbier, W. R.; Duan, J.-X.; Chen, Q.-Y. J. Org. Chem. 1998, 63, 9486.
(b) Li, J.-H.; Tang, S. Synth. Commun. 2005, 35, 105.
(c) Su, L.; Lei, C.-Y.; Fan, W.-Y.; Liu, L.-X. Synth. Commun. 2011, 41, 1200.
[17] (a) Li, J.-H.; Xie, Y.-X.; Yin, D.-L. Green Chem. 2002, 4, 505.
(b) Larson, S.; Luidhardt, T.; Kabalka, G. W.; Pagni, R. M. Tetrahedron Lett. 1988, 29, 35.
(c) Song, S.; Li, X.; Wei, J.; Wang, W.; Zhang, Y.; Ai, L.; Zhu, Y.; Shi, X.; Zhang, X.; Jiao, N. Nat. Catal. 2020, 3, 107.
[18] Banothu, R.; Peraka, S.; Kodumuri, S.; Chevella, D.; Gajula, K. S.; Amrutham, V.; Yennamaneni, D. R.; Nama, N. New J. Chem. 2018, 42, 17879.
[19] Stavber, S.; Stavber, G.; Iskra, J.; Zupan, M. Adv. Synth. Catal. 2008, 350, 2921.
[20] Guo, C.-C.; Jiang, Q.; Wang, J.-Y. Synthesis 2015, 47, 2081.
[21] (a) Liu, Y.; Maruoka, K.; Huang, D.-Y.; Huang, J. J. Org. Chem. 2017, 82, 11865.
(b) Kashyap, S.; Rao D. S.; Reddy, T. R. Org. Biomol. Chem. 2018, 16, 1508.
[22] Madabhushi, S.; Jillella, R.; Mallu, K. K. R.; Golada, K. R.; Vangipuram, V. S. Tetrahedron Lett. 2013, 54, 3993.
[23] Yang, F.; Jin, T.; Bao, M.; Yamamoto, Y. Chem. Commun. 2011, 47, 4013.
文章导航

/