研究简报

无溶剂无催化剂条件下三组分一锅合成2,4,6-三芳基嘧啶衍生物的新方法

  • 丁雨昕 ,
  • 马永敏 ,
  • 陈静
展开
  • a 浙江中医药大学药学院 浙江杭州 310053;
    b 台州大学医药化工学院 浙江台州 318000

收稿日期: 2020-05-28

  修回日期: 2020-06-28

  网络出版日期: 2020-07-23

基金资助

浙江省自然科学基金(No.LY19H300001)、浙江中医药大学校级科研基金(No.2018ZG31)和2019年度高等学校国内访问者“教师专业发展项目”(No.FX2019020)资助项目.

Novel Three-Component Annulation for the Synthesis of 2,4,6-Triaryl-pyrimidines under Solvent-Free and Catalyst-Free Conditions

  • Ding Yuxin ,
  • Ma Yongmin ,
  • Chen Jing
Expand
  • a School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053;
    b School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang 318000

Received date: 2020-05-28

  Revised date: 2020-06-28

  Online published: 2020-07-23

Supported by

Project supported by the Natural Science Foundation of Zhejiang Province (No. LY19H300001), the Zhejiang Chinese Medicinal University Foundation (No. 2018ZG31) and the "Teacher Professional Development Project" for Domestic Visitors of Institutions of Higher Learning in 2019 (No. FX2019020).

摘要

以1,3-二酮、苯甲醛和醋酸铵为原料,成功地开发了一种简便、高效、无溶剂和催化剂的三组分一锅合成法,高收率地得到了2,4,6-三芳基嘧啶化合物.此方法提供了一条"绿色"合成嘧啶骨架新策略.

本文引用格式

丁雨昕 , 马永敏 , 陈静 . 无溶剂无催化剂条件下三组分一锅合成2,4,6-三芳基嘧啶衍生物的新方法[J]. 有机化学, 2020 , 40(12) : 4357 -4363 . DOI: 10.6023/cjoc202005078

Abstract

2,4,6-Triarylpyrimidines were synthesized via a simple, efficient, one-pot, three-component reaction from 1,3-dikeones, benzaldehydes and ammonium acetate under solvent-free and catalyst-free conditions in good to excellent yields. This "green" methodology provides an eco-friendly protocol for the construction of the pyrimidine framework.

参考文献

[1] (a) Santos, M. F. C.; Harper, P. M.; Williams, D. E.; Mesquita, J. T.; Pinto, É. G.; da Costa-Silva, T. A.; Hajdu, E.; Ferreira, A. G.; Santos, R. A.; Murphy, P. J. J. Nat. Prod. 2015, 78, 1101.
(b) Pettit, G. R.; Tang, Y.; Zhang, Q.; Bourne, G. T.; Hooper, J. N. A. J. Nat. Prod. 2013, 76, 420.
[2] (a) Hou, J.; Wan, S.; Wang, G.; Zhang, T.; Li, Z.; Tian, Y.; Yu, Y.; Wu, X.; Zhang, J. Eur. J. Med. Chem. 2016, 118, 276.
(b) Agarwal, A.; Srivastava, K.; Puri, S. K.; Chauhan, P. M. S. Bioorg. Med. Chem. 2005, 13, 4645.
(c) Parker, W. B. Chem. Rev. 2009, 109, 2880.
(d) Shipe, W. D.; Sharik, S. S.; Barrow, J. C.; McGaughey, G. B.; Theberge, C. R.; Uslaner, J. M.; Yan, Y.; Renger, J. J.; Smith, S. M.; Coleman, P. J.; Cox, C. D. J. Med. Chem. 2015, 58, 7888.
(e) Johar, M.; Manning, T.; Kunimoto, D. Y.; Kumar, R. Bioorg. Med. Chem. 2005, 13, 6663.
(f) Agarwal, A.; Srivastava, K.; Puri, S. K.; Chauhan, P. M. S. Bioorg. Med. Chem. Lett. 2005, 15, 1881.
(g) Guo, Y.; Li, J.; Ma, J.; Yu, Z.; Wang, H.; Zhu, W.; Liao, X.; Zhao, Y. Chin. Chem. Lett. 2015, 26, 755.
(h) Chen, W.; Li, Y.; Zhou, Y.; Ma, Y.; Li, Z. Chin. Chem. Lett. 2019, 30, 2160.
(i) Shao, K.; Zhang, X.; Zhang, X.; Xue, D.; Ma, L.; Zhang, Q.; Liu, H. Chin. J. Chem. 2014, 32, 443.
[3] (a) Undheim, K.; Benneche, T. In Comprehensive Heterocyclic Chemistry II, Vol. 6, Eds.:Katritzky, A. R.; Rees, C. W.; Scriven, E. V. F., Pergamon Press, London, 1996, p. 93.
(b) Brown, D. J.; Evans, R. F.; Cowden, W. B. In The Pyrimidines, Vol. 52, Eds.:Taylor, E. C.; Weissberger, A., John Wiley, New York, 1994.
[4] (a) Gompper, R.; Mair, H.-J.; Polborn, K. Synthesis 1997, 696.
(b) Bassani, D. M.; Lehn, J. A.; Baum, G.; Fenske, D. Angew. Chem., Int. Ed. 1997, 36, 1845.
(c) Zhao, F.; Zhao, X.; Peng, B.; Gan, F.; Yao, M.; Tan, W.; Dong, J.; Zhang, Q. Chin. Chem. Lett. 2018, 29, 1692.
[5] (a) Wong, K.-T.; Hung, T. S.; Lin, Y.; Wu, C.-C.; Lee, G.-H.; Peng, S.-M.; Chou, C. H.; Su, Y. O. Org. Lett. 2002, 4, 513.
(b) Li, L.; Fang, Y.; Chen, H.; Zhang, Y. Chin. J. Chem. 2012, 30, 1144.
[6] (a) Harriman, A.; Ziessel, R. Coord. Chem. Rev. 1998, 171, 331.
(b) Harriman, A.; Ziessel, R. Chem. Commun. 1996, 32, 1707.
[7] (a) Dodson, R. M.; Seyler, J. K. J. Org. Chem. 1951, 16, 461.
(b) Guo, W. Chin. Chem. Lett. 2016, 27, 47.
(c) Chu, X. Q.; Cao, W.-B.; Xu, X.-P.; Ji, S.-J. J. Org. Chem. 2017, 82, 1145.
[8] Yuan, J.; Li, J.; Wang, B.; Sun, S.; Cheng, J. Tetrahedron Lett. 2017, 58, 4783.
[9] Wang, P.; Zhang, X.; Liu, Y.; Chen, B. Asian J. Org. Chem. 2019, 8, 1122.
[10] (a) Deibl, N.; Ament, K.; Kempe, R. J. Am. Chem. Soc. 2015, 137, 12804.
(b) Bule, M. H.; Esfandyari, R.; Tafesse, T. B.; Amini, M.;Faramarzi, M. A.; Abdollahi, M. J. Chem. Pharm. Res. 2019, 11, 27
(c) Shi, T.; Qin, F.; Q. Zhang, Li, W. Org. Biomol. Chem. 2018, 16, 9487.
[11] Liu, D.; Guo, W.; Wu, W.; Jiang, H. J. Org. Chem. 2017, 82, 13609.
[12] (a) Martínez, A. G.; Fernandez, A. H.; Alvarez, R. M.; Losada, M. C. S.; Vilchez, D. M.; Subramanian, L. R.; Hanack, M. Synthesis 1990, 881.
(b) Fuji, M.; Obora, Y. Org. Lett. 2017, 19, 5569.
(c) Su, L.; Sun, K.; Pan, N.; Liu, L.; Yin, S. F. Org. Lett. 2018, 20, 3399.
[13] Schomaker, J. M.; Delia, T. J. J. Org. Chem. 2001, 66, 7125.
[14] Adib, M.; Mahmoodi, N.; Mahdavi, M.; Bijanzadeh, H. R. Tetrahedron Lett. 2006, 47, 9365.
[15] Seki, M.; Kubota, H.; Matsumoto, K.; Kinumaki, A.; Date, T.; Okamura, K. J. Org. Chem. 1993, 58, 6354.
[16] Heravi, M. M.; Sadjadi, S.; Oskooie, H. A.; Shoar, R. H.; Bamoharram, F. F. Tetrahedron Lett. 2009, 50, 662.
[17] Ding, Y. X.; Ma, R. C.; Hider, R. C.; Ma, Y. M. Asian J. Org. Chem. 2020, 9, 242.
[18] Itami, K.; Yamazaki, D.; Yoshida, J. J. Am. Chem. Soc. 2004, 126, 15396.
[19] Komatsu, R.; Nakao, K.; Sasabe, H.; Komatsu, R.; Hayasaka, Y.; Ohsawa, T.; Kido, J. J. Adv. Opt. Mater. 2017, 5, 1600675.
文章导航

/