综述与进展

末端炔烃保护基的研究进展

  • 胡志芳 ,
  • 彭丽芬 ,
  • 邱仁华 ,
  • 折田明浩
展开
  • a 湖南科技大学化学化工学院 理论有机化学与功能分子教育部重点实验室 精细聚合物可控制备及功能化应用湖南省重点实验室 湖南湘潭 411201;
    b 湖南大学化学化工学院 化学生物传感与计量学国家重点实验室 长沙 410082;
    c 日本冈山理科大学化学系 日本冈山 700-0005

收稿日期: 2020-05-31

  修回日期: 2020-07-02

  网络出版日期: 2020-07-23

基金资助

国家自然科学基金(No.21802040)、湖南省自然科学基金(No.2018JJ3145)、湖南科技大学理论有机化学与功能分子教育部重点实验室开放基金(No.E21843)资助项目.

Recent Progress of Protecting Groups for Terminal Alkynes

  • Hu Zhifang ,
  • Peng Lifen ,
  • Qiu Renhua ,
  • Orita Akihiro
Expand
  • a Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China;
    b State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China;
    c Department of Chemistry, Okayama University of Science, Okayama 700-0005, Japan

Received date: 2020-05-31

  Revised date: 2020-07-02

  Online published: 2020-07-23

Supported by

Project supported by the National Natural Science Foundation of China (No. 21802040), the Natural Science Fund Youth Project of Hunan Province (No. 2018JJ3145) and the Open Foundation of Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan University of Science and Technology (No. E21843).

摘要

官能团的保护/脱保护是有机合成中最基础的技能之一,理想保护基需具备容易引入、稳定及容易脱保护等条件,末端炔烃中的氢原子具有一定酸性,在某些反应中往往需要先进行保护.综述了末端炔烃保护基的研究进展,对极性较小的保护基如三甲基硅基(TMS)、三甲基锗基(Me3Ge),极性较大的保护基如(3-氰基丙基)二甲基甲硅烷基(CPDMS)、(3-氰基丙基)二异丙基甲硅烷基(CPDIPS)和二苯基膦酰基(Ph2P(O))进行了详细介绍

本文引用格式

胡志芳 , 彭丽芬 , 邱仁华 , 折田明浩 . 末端炔烃保护基的研究进展[J]. 有机化学, 2020 , 40(10) : 3112 -3119 . DOI: 10.6023/cjoc202005094

Abstract

The protection/deprotection of functional group is one of the fundamental technologies in organic synthesis. An ideal protecting group needs to satisfy the following issues:facile introduction, stability and facile deprotection. Protection of an acetylenic hydrogen is often necessary because of its acidity. In this review, the recent progress of protecting groups for terminal alkyne is highlighted. Based on different polarity of protecting groups, less polar protecting groups such as trimethylsilyl (TMS), trimethylgermanium group (Me3Ge) and high polar protecting groups like (3-cyanopropyl)dimethylsilyl (CPDMS), (3-cyanopropyl)diisopropylsilyl (CPDIPS) and diphenylphosphoryl (Ph2P(O)) are introduced in detail.

参考文献

[1] Greene, T. W.; Wuts. P. G. M. Protective Groups in Organic Synthesis, 3th ed., John Wiley & Sons, Inc., New York, 1999.
[2] (a) Stang, P. J.; Diederich. F. Modern Acetylene Chemistry, VCH, Weinheim, 1995.
(b) Diederich, F.; Stang, P. J.; Tykwinski, R. R. Acetylene Chemistry, Willey-VCH Verlag GmbH & CO. KgaA, Weinheim, 2005.
(c) Peng, L.-F.; Zhang, S.-W.; Wang, B.-H.; Xun, M.-S.; Tang, Z.-L.; Jiao, Y.-C.; Xu, X.-H. Chin. J. Org. Chem. 2018, 38, 519(in Chinese). (彭丽芬, 张思维, 王丙昊, 寻梦硕, 唐子龙, 焦银春, 许新华, 有机化学, 2018, 38, 519.)
(d) Peng, L.-F.; Wang, B.-H.; Wang, M.; Tang, Z.-L.; Jiang, Y.-Z.; Jiao, Y.-C.; Xu, X.-H. J. Chem. Res. 2018, 42, 235.
(e) Wang, Z.; Yang, L.; Liu, H.-L.; Bao, W.-H.; Tan, Y.-Z.; Wang, M.; Tang, Z.; He, W.-M. Chin. J. Org. Chem. 2018, 38, 2639(in Chinese). (王峥, 杨柳, 刘慧兰, 谭英芝, 包文虎, 汪明, 唐子龙, 何卫民, 有机化学, 2018, 38, 2639.)
(f) Peng, L.-F.; Lei, J.-Y.; Wu, L.; Tang, Z.-L.; Luo, Z.-P.; Jiao, Y.-C.; Xu, X.-H. J. Chem. Res. 2018, 42, 271.
(g) Li, W.-Y.; Yin, G.-X.; Huang, L.; Xiao, Y.; Fu, Z.-M.; Xin, X.; Liu, F.; Li, Z.-Z. He, W.-M. Green Chem. 2016, 18, 4879.
(h) Wu, C.; Wang, Z.; Hu, Z.; Zeng, F.; Zhang, X.-Y.; Cao, Z.; Tang, Z.;. He, W.-M.; Xu, X.-H. Org. Biomol. Chem. 2018, 16, 3177.
(i) Peng, L.-F.; Peng, C.; Wang, M.; Tang, Z.-L.; Jiao, Y.-C.; Xu, X.-H. Chin. J. Org. Chem. 2018, 38, 3048(in Chinese). (彭丽芬, 彭超, 汪明, 唐子龙, 焦银春, 许新华, 有机化学, 2018, 38, 3048.)
(j) Wu, L.; Peng, L.-F.; Hu, Z.-F.; Wang, H.; Tang, Z.-L.; Jiao Y.-C.; Xu, X.-H. J. Chem. Res. 2019, 43, 503.
[3] (a) Mao, G.; Orita, A.; Fenenko, L.; Yahiro, M.; Adachi, C.; Otera, J. Mater. Chem. Phys. 2009, 115, 378.
(b) Fenenko, L.; Shao, G.; Orita, A.; Yahiro, M.; Otera, J.; Svechnikov, S.; Adachi, C. Chem. Commun. 2007, 2278.
(c) Matsuo, D.; Yang, X.; Hamada, A.; Morimoto, K.; Kato, T.; Yahiro, M.; Adachi, C.; Orita, A.; Otera, J. Chem. Lett. 2010, 39, 1300.
(d) Oyamada, T.; Shao, G.; Uchiuzou, H.; Nakanotani, H.; Orita, A.; Otera, J.; Yahiro, M.; Adachi, C. Jpn. J. Appl. Phys., Part 2 2006, 45, 46.
(e) Yang, X.; Kajiyama, S.; Fang, J.-K.; Xu, F.; Uemura, Y.; Koumura, N.; Hara, K.; Orita, A.; Otera, J. Bull. Chem. Soc. Jpn. 2012, 85, 687.
(f) Yang, X.; Fang, J.-K.; Suzuma, Y.; Xu, F.; Orita, A.; Otera, J.; Kajiyama, S.; Koumura, N.; Hara, K. Chem. Lett. 2011, 40, 620.
(g) Peng, L.-F.; Hu, Z.-F.; Wang, H.; Wu, L.; Jiao, Y.-C.; Tang, Z.-L.; Xu, X.-H. RSC. Adv. 2020, 10232.
(h) Peng, L.-F.; Lei, J.-Y.; Wu, L.; Tang, Z.-L.; Luo, Z.-P.; Jiao Y.-C.; Xu, X.-H. J. Chem. Res. 2018, 42, 271.
(i) Peng, L.-F.; Li, R.-Z.; Tang, Z.-L.; Chen, J.-Y.; Yi, R.-N.; Xu, X.-H. Tetrahedron 2017, 73, 3099.
(l) Peng, L.-F.; Jiang, J.; Peng, C.; Dai, N.-N.; Tang, Z.-L.; Jiao Y.-C.; Chen, J.-Y.; Xu, X.-H. Chin. J. Org. Chem. 2017, 37, 3013(in Chinese). (彭丽芬, 蒋娟, 彭超, 代宁宁, 唐子龙, 焦银春, 陈锦杨, 许新华, 有机化学, 2017, 37, 3013.)
(m) Peng, L.-F.; Hu, Z.-F.; Lu, Q.-C.; Tang, Z.-L.; Jiao Y.-C.; Xu, X.-H. Chin. Chem. Lett. 2019, 30, 2151.
(n) Wu, L.; Peng, L.-F.; Hu, Z.-F.; Jiao, Y.-C.; Tang, Z.-L.; Xu, X.-H. Curr. Org. Synth. 2020, 17, 271.
[4] (a) Rankin, G. M.; Maxwell-Cameron, I.; Painter, G. F.; Larsen, D. S. J. Org. Chem. 2013, 78, 5264.
(b) Urones, B.; Gómez Arrayás, R.; Carretero, J. C. Org. Lett. 2013, 15, 1120.
(c) Balbuena, P.; Gonçalves-Pereira, R.; Jiménez Blanco, J. L.; García-Moreno, M. I.; Lesur, D.; Ortiz Mellet, C.; García Fernández, J. M. J. Org. Chem. 2013, 78, 1390.
(d) Muranaka, K.; Ichikawa, S.; Matsuda, A. J. Org. Chem. 2011, 76, 9278.
(e) Ihara, H.; Koyanagi, M.; Suginome, M. Org. Lett. 2011, 13, 2662.
(f) Liang, H.; Corey, E. J. Org. Lett. 2011, 13, 4120.
[5] (a) Palmer, C. J.; Casida, J. E. Tetrahedron Lett. 1990, 31, 2857.
(b) Andreev, A. A.; Konshin, V. V.; Komarov, N. V.; Rubin, M.; Brouwer, C.; Gevorgyan, V. Org. Lett. 2004, 6, 421.
(c) Jiang, H.; Zhu, S. Tetrahedron Lett. 2005, 46, 517.
[6] Ernst, A.; Gobbi, L.; Vasella, A. Tetrahedron Lett. 1996, 37, 7959.
[7] Höger, S.; Bonrad, K. J. Org. Chem. 2000, 65, 2243.
[8] Gaefke, G.; Höger, S. Synthesis 2008, 2155.
[9] Yang, X.; Matsuo, D.; Suzuma, Y.; Fang, J.-K.; Xu, F.; Orita, A.; Otera, J. Synlett 2011, 2402.
[10] (a) Ito, H.; Arimoto, K.; Senusui, H.O.; Hosomi, A. Tetrahedron Lett. 1997, 38, 3977.
(b) Sugita, H.; Hatanaka, Y.; Hiyama, T. Chem. Lett. 1996, 25, 379.
[11] Davidsohn, W. E.; Henry, M. C. Chem. Rev. 1967, 67, 73.
[12] (a) Cai, C.; Vasella, A. Helv. Chim. Acta 1995, 78, 732.
(b) Nishikawa, T.; Ino, A.; Isobe, M.; Tetrahedron 1994, 50, 1449.
(c) Scott, L. T.; Cooney, M. J.; Johnels, D. J. Am. Chem. Soc. 1990, 112, 4054.
(d) Lu, Y.-F.; Fallis, A. G. Tetrahedron Lett. 1993, 34, 3367.
(e) Nielsen, M. B.; Diederich, F. Synlett 2002, 544.
(f) Tobe, Y.; Utsumi, N.; Kawabata, K.; Naemura, K. Tetrahedron Lett. 1996, 37, 9325.
[13] Nishikawa, T.; Ino, A.; Isobe, M. Tetrahedron 1994, 50, 1449.
[14] Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874.
[15] Li, H.-B.; Petersen, J. L.; Wang, K.-K. J. Org. Chem. 2001, 66, 7804.
[16] (a) Haley, M. M.; Bell, M. L.; English, J. J.; Johnson, C. A.; Weakley, T. J. R. J. Am. Chem. Soc. 1997, 119, 2956.
(b) Bell, M. L.; Chiechi, R. C.; Johnson, C. A.; Kimbal, D. B.; Matzger, A.; Wan, W. B.; Weakley, T. J. R.; Haley, M. M. Tetrahedron 2001, 57, 3507.
[17] (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467.
(b) Tohda, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1977, 777.
(c) Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1980, 627.
[18] Peng, L.-F.; Xu, F.; Suzuma, Y.; Orita, A.; Otera, J. J. Org. Chem. 2013, 78, 12802.
[19] Peng, L.-F.; Xu, F.; Shinohara, K.; Orita, A.; Otera, J. Chem. Lett. 2014, 43, 1610.
[20] Tahara, K.; Furukawa, S.; Uji-i, H.; Uchino, T.; Ichikawa, T.; Zhang, J.; Mandouh, W.; Sonoda, M.; Schryver, F. C. D.; Feyter, S. D.; Tobe, Y. J. Am. Chem. Soc. 2006, 128, 16613.
[21] (a) Peña-López, M.; Ayán-Varela, M.; Sarandeses, L. A.; Sestelo, J. P. Chem. Eur. J. 2010, 16, 9905.
(b) Dogan, J.; Schulte, J. B.; Swiegers, G. F.; Wild, S. B. J. Org. Chem. 2000, 65, 951.
(c) Lu, E.; Chen, Y.; Zhou, J.; Leng, X. Organometallics 2012, 31, 4574.
[22] (a) Kosugi, M.; Fugami, K. Handbook of Organopalladium Chemistry for Organic Synthesis, Ed.:Negishi, E., Wiley, New York, 2002.
(b) Tsuji, J. Palladium Reagents and Catalysts, Wiley, Chichester, U. K. 2004.
(c) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508.
[23] Warner, B. P.; Buchwald, S. L. J. Org. Chem. 1994, 59, 5822.
[24] (a) Mössinger, D.; Jester, S. S.; Sigmund, E.; Müller, U.; Höger, S. Macromolecules 2009, 42, 7974.
(b) Nicolaou, K. C.; Zipkin,R. E.; Petasis, N. A. J. Am. Chem. Soc. 1982, 104, 5558.
[25] Peña-López, M.; Ayán-Varela, M.; Sarandeses, L. A.; Sestelo, J. P. Chem. Eur. J. 2010, 16, 9905.
[26] (a) Peng, L.-F.; Xu, F.; Shinohara, K.; Orita, A.; Otera, J. Org. Chem. Front. 2015, 2, 248.
(b) Ikegashira, K.; Nishihara, Y.; Hirabayashi, K.; Mori, A.; Hiyama, T. Chem. Commun. 1997, 1039.
(c) Nishihara, Y.; Ikegashira, K.; Mori, A.; Hiyama, T. Chem. Lett. 1997, 26, 1233.
(d) Nishihara, Y.; Ikegashira, K.; Hirabayashi, K.; Ando, J.; Mori, A.; Hiyama, T. J. Org. Chem. 2000, 65, 1780.
文章导航

/