综述与进展

基于糖烯的碳苷合成方法研究进展

  • 郭真言 ,
  • 柏金和 ,
  • 刘苗 ,
  • 熊德彩 ,
  • 叶新山
展开
  • 北京大学天然药物及仿生药物国家重点实验室 北京 100191

收稿日期: 2020-06-05

  修回日期: 2020-07-02

  网络出版日期: 2020-07-23

基金资助

国家重点研发计划(No.2018YFA0507602)、国家自然科学基金项目(No.21738001)、国家重大新药创制专项(No.2019ZX09301106)资助项目.

Advances in the Synthesis of C-Glycosides from Glycals

  • Guo Zhenyan ,
  • Bai Jinhe ,
  • Liu Miao ,
  • Xiong Decai ,
  • Ye Xinshan
Expand
  • State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191

Received date: 2020-06-05

  Revised date: 2020-07-02

  Online published: 2020-07-23

Supported by

Project supported by the National Key Research and Development Program of China (No. 2018YFA0507602), the National Natural Science Foundation of China (No. 21738001), and the National New Drug Innovation Major Project of China (No. 2019ZX09301106).

摘要

碳苷是一类具有多种生物活性的糖类天然产物,其独特的C—C糖苷键构筑是糖化学研究中的热点和难点.通过双键官能团构建新的C—C键是有机化学中的常用策略.随着烯化学的飞速发展,含1,2-位双键的糖烯供体在碳苷合成中也取得了显著进步.从Ferrier I型碳苷化反应、Heck偶联型碳苷化反应、1-取代糖烯的过渡金属催化偶联碳苷化反应、2-取代糖烯的Michael加成型和自由基加成型碳苷化反应等方面,总结近年来基于糖烯的碳苷合成方法.

本文引用格式

郭真言 , 柏金和 , 刘苗 , 熊德彩 , 叶新山 . 基于糖烯的碳苷合成方法研究进展[J]. 有机化学, 2020 , 40(10) : 3094 -3111 . DOI: 10.6023/cjoc202006005

Abstract

C-Glycosides are a class of carbohydrates with a variety of biological activities, and the construction of their unique C-C glycosidic bond is a hot and challenging topic in carbohydrate chemistry. The formation of new C-C bond from carbon-carbon double bond is a common strategy in organic chemistry. With the rapid development of ene-chemistry, great progress in the synthesis of C-glycosides from glycal donors containing 1,2-double bond has been made. In this review, the methods for the synthesis of C-glycosides based on glycals are summarized, including Ferrier I-type C-glycosylation, Heck-type C-glycosylation, C-glycosylation of 1-substituted glycals using transition metal-catalyzed coupling reaction, Michael-type C-glycosylation of 2-substituted glycals, and radical addition type C-glycosylation of glycals.

参考文献

[1] Štambaský, J.; Hocek, M.; Kočovský, P. Chem. Rev. 2009, 109, 6729.
[2] Cao, X.; Tian, Y.; Zhang, T.; Li, X.; Ito, Y. J. Chromatogr. A 1999, 855, 709.
[3] (a) Funahashi, Y.; Kawamura, N.; Ishimaru, T. JP 08231551, 1996.
(b) Funahashi, Y.; Kawamura, N.; Ishimaru, T. JP 08231552, 1996.
[4] Franck, R. W. Angew. Chem., Int. Ed. 2004, 43, 3818.
[5] (a) Kitamura, K.; Ando, Y.; Matsumoto, T.; Suzuki, K. Chem. Rev. 2018, 118, 1495.
(b) Yang, Y.; Yu, B. Chem. Rev. 2017, 117, 12281.
[6] (a) Gómez, A. M.; Lobo, F.; Uriel, C.; López, J. C. Eur. J. Org. Chem. 2013, 7221.
(b) Vieira, A. S.; Fiorante, P. F.; Hough, T. L. S.; Ferreira, F. P.; Ludtke, D. S.; Stefani, H. A. Org. Lett. 2008, 10, 5215.
(c) Huang, N.; Liao, H.; Yao, H.; Xie, T.; Zhang, S.; Zou, K.; Liu, X. W. Org. Lett. 2018, 20, 16.
[7] (a) Takhi, M.; Rahman, A. H. A.; Schmidt, R. R. Tetrahedron Lett. 2001, 42, 4053.
(b) Anjaiah, S.; Chandrasekhar, S.; Grée, R. J. Mol. Catal. A:Chem. 2004, 214, 133.
[8] (a) Saeeng, R.; Sirion, U.; Sahakitpichan, P.; Isobe, M. Tetrahedron Lett. 2003, 44, 6211.
(b) Yadav, J. S.; Reddy, B. V. S.; Rao, C. V.; Chand, P. K.; Prasad, A. R. Synlett 2001, 1638.
[9] Das, S. K.; Reddy, K. A.; Abbineni, C.; Roy, J.; Rao, K. V. L. N.; Sachwani, R. H.; Iqbal, J. Tetrahedron Lett. 2003, 44, 4507.
[10] Ansari, A. A.; Reddy, Y. S.; Vankar, Y. D. Beilstein J. Org. Chem. 2014, 10, 300.
[11] Steinhuebel, D. P.; Fleming, J. J.; Bois, J. D. J. Org. Lett. 2002, 4, 293.
[12] Tatina, M. B.; Kusunuru, A. K.; Yousuf, S. K.; Mukherjee, D. Org Biomol. Chem. 2014, 12, 7900.
[13] (a) Di Bussolo, V.; Caselli, M.; Pineschi, M.; Crotti, P. Org. Lett. 2003, 5, 2173.
(b) Bussolo, V. D.; Caselli, M.; Romano, M. R.; Pineschi, M.; Crotti, P. J. Org. Chem. 2004, 69, 7383.
[14] Deelertpaiboon, P.; Reutrakul, V.; Jarussophon, S.; Tuchinda, P.; Kuhakarn, C.; Pohmakotr, M. Tetrahedron Lett. 2009, 50, 6233.
[15] Lubin-Germain, N.; Hallonet, A.; Huguenot, F.; Palmier, S.; Uziel, J.; Augé, J. Org. Lett. 2007, 9, 3679.
[16] Vieira, A. S.; Fiorante, P. F.; Hough, T. L.; Ferreira, F. P.; Lüdtke, D. S.; Stefani, H. A. Org. Lett. 2008, 10, 5215.
[17] Kusunuru, A. K.; Tatina, M.; Yousuf, S. K.; Mukherjee, D. Chem Commun. 2013, 49, 10154.
[18] Hosseyni, S.; Smith, C. A.; Shi, X. Org. Lett. 2016, 18, 6336.
[19] Devari, S.; Kumar, M.; Deshidi, R.; Rizvi, M.; Shah, B. A. Beilstein J. Org. Chem. 2014, 10, 2649.
[20] Chen, H.; Luo, X.; Qiu, S.; Sun, W.; Zhang, J. Glycoconjugate J. 2017, 34, 13.
[21] Tan, H. Y.; Xiang, S.; Leng, W. L.; Liu, X.-W. RSC Adv. 2014, 4, 34816.
[22] Dash, A. K.; Madhubabu, T.; Yousuf, S. K.; Raina, S.; Mukherjee, D. Carbohydr. Res. 2017, 438, 1.
[23] Yadav, J. S.; Reddy, B. V. S.; Rao, K. V.; Saritha Raj, K.; Prasad, A. R.; Kiran Kumar, S.; Kunwar, A. C.; Jayaprakash, P.; Jagannath, B. Angew. Chem. Int. Ed. 2003, 115, 5356.
[24] Reddy, G. M.; Maheswara Rao, B. U.; Sridhar, P. R. J. Org. Chem. 2016, 81, 2782.
[25] (a) Moineau, C.; Bolitt, V.; Sinou, D. J. Org. Chem. 1998, 63, 582.
(b) Bertini, B.; Moineau, C.; Sinou, D.; Gesekus, G.; Vill, V. Eur. J. Org. Chem. 2001, 2001, 375.
(c) Zeng, J.; Ma, J.; Xiang, S.; Cai, S.; Liu, X.-W. Angew. Chem. Int. Ed. 2013, 125, 5238.
(d) Bai, Y.; Leng, W. L.; Li, Y.; Liu, X.-W. Chem. Commun. 2014, 50, 13391.
(e) Leng, W.-L.; Liao, H.; Yao, H.; Ang, Z.-E.; Xiang, S.; Liu, X.-W. Org. Lett. 2017, 19, 416.
[26] Dai, Y.; Tian, B.; Chen, H.; Zhang, Q. ACS Catal. 2019, 9, 2909.
[27] Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5518.
[28] Arai, I.; Daves, G. D. J. Org. Chem. 1979, 44, 21.
[29] Farr, R. N.; Outten, R. A.; Cheng, J. C.-Y.; Daves, G. D., Jr. Organometallics 1990, 9, 3151.
[30] Zhang, H.; Daves, G. D., Jr. J. Org. Chem. 1992, 57, 4690.
[31] Li, H.-H.; Ye, X.-S. Org. Biomol. Chem. 2009, 7, 3855.
[32] Lei, M.; Gao, L.; Yang, J.-S. Tetrahedron Lett. 2009, 50, 5135.
[33] Jovanovic, P.; Petkovic, M.; Simic, M.; Jovanovic, M.; Tasic, G.; Crnogorac, M. D.; Zizak, Z.; Savic, V. Eur. J. Org. Chem. 2019, 2019, 4701.
[34] Tao, Y.; Ding, N.; Ren, S.; Li, Y. Tetrahedron Lett. 2013, 54, 6101.
[35] (a) Rammauth, J.; Poulin, O.; Rakhit, S.; Maddaford, S. P. Org. Lett. 2001, 3, 2013.
(b) Ramnauth, J.; Poulin, O.; Bratovanov, S. S.; Rakhit, S.; Maddaford, S. P. Org. Lett. 2001, 3, 2571.
[36] Figuera, N.; Forns, P.; Fernandez, J. C.; Fiol, S.; Fernandez-Forner, D.; Albericia, F. Tetrahedron Lett. 2005, 46, 7271.
[37] Lai, M.; Othman, K. A.; Yao, H.; Wang, Q.; Feng, Y.; Huang, N.; Liu, M.; Zou, K. Org. Lett. 2020, 22, 1144.
[38] Xiong, D.-C.; Zhang, L.-H.; Ye, X.-S. Org. Lett. 2009, 11, 1709.
[39] Mabit, T.; Siard, A.; Legros, F.; Guillarme, S.; Martel, A.; Lebreton, J.; Carreaux, F.; Dujardin, G.; Collet, S. Chem.-Eur. J. 2018, 24, 14069.
[40] Yoshikawa, Y.; Ishibashi, A.; Murai, K.; Kaneda, Y.; Nimura, K.; Arisawa, M. Tetrahedron Lett. 2019, 60, 151313.
[41] Liu, C.-F.; Xiong, D.-C.; Ye, X.-S. J. Org. Chem. 2014, 79, 4676.
[42] Kusunuru, A. K.; Jaladanki, C. K.; Tatina, M. B.; Bharatam, P. V.; Mukherjee, D. Org. Lett. 2015, 17, 3742.
[43] Bai, Y.; Kim, L. M. H.; Liao, H.; Liu, X.-W. J. Org. Chem. 2013, 78, 8821.
[44] (a) Tang, S.; Zheng, Q.; Xiong, D.-C.; Jiang, S.; Li, Q.; Ye, X.-S. Org. Lett. 2018, 20, 3079.
(b) Xiong, D.-C.; Gao, C.; Li, W.-M.; Wang, Y.; Li, Q.; Ye, X.-S. Org. Chem. Front. 2014, 1, 798.
(c) Liu, M.; Li, B.-H.; Li, T.; Liu, M.; Xiong, D.-C.; Ye, X.-S. Org. Biomol. Chem. 2020, 18, 3043.
(d) Zheng, Q.; Tang, S.; Xiong, D.-C.; Li, Q.; Ye, X.-S. J. Org. Chem. 2020, 85, 9339.
[45] (a) Singh, A. K.; Kandasamy, J. Org. Biomol. Chem. 2018, 16, 5107.
(b) Singh, A. K.; Venkatesh, R.; Kandasamy, J. Synthesis 2019, 51, 4215.
[46] Xiang, S.; Cai, S.; Zeng, S.; Liu, X.-W. Org. Lett. 2011, 13, 4608.
[47] Kusunuru, A. K.; Yousuf, S. K.; Tatina, M.; Mukherjee, D. Eur. J. Org. Chem. 2015, 2015, 459.
[48] Sakamoto K.; Nagai M.; Ebe Y.; Yorimitsu H.; Nishimura k. ACS Catal. 2019, 9, 1347.
[49] Kikuchi, T.; Takagi, J.; Isou, H.; Ishiyama, T.; Miyaura, N. Chem. Asian J. 2008, 3, 2082.
[50] Parkan, K.; Pohl, R.; Kotora, M. Chem.-Eur. J. 2014, 20, 4414.
[51] Oroszova, B.; Choutka, J.; Pohl, R.; Parkan, K. Chem.-Eur. J. 2015, 21, 7043.
[52] Gong, L.; Sun, H.-B.; Deng, L.-F.; Zhang, X.; Liu, J.; Yang, S.; Niu, D. J. Am. Chem. Soc. 2019, 141, 7680.
[53] Dubbaka, S. R.; Steunenberg, P.; Vogel, P. Synlett 2004, 1235.
[54] Koo, B.; E. McDonald, F. Org. Lett. 2005, 7, 3621.
[55] Hartung, J.; Wright, B. J. D.; Danishefsky, S. J. Chem.-Eur. J. 2014, 20, 8731.
[56] Koester, D. C.; Kriemen, E.; Werz, D. B. Angew. Chem. Int. Ed. 2013, 52, 2985.
[57] Potuzak, J. S.; Tan, D. S. Tetrahedron Lett. 2004, 45, 1797.
[58] (a) Liu, M.; Niu, Y.-H.; Wu, Y.-F.; Ye, X.-S. Org. Lett. 2016, 18, 1836.
(b) Wang, H.; Niu, Y.-H.; Zhang, G.; Ye, X.-S. Tetrahedron Lett. 2016, 57, 4544.
[59] Zhang, S.; Niu, Y.-H.; Ye, X.-S. Org. Lett. 2017, 19, 3608.
[60] Liu, Y.; Wang, Y.; Dai, W.; Huang, W.; Li, Y.; Liu, H. Angew. Chem. Int. Ed. 2020, 59, 3491.
[61] Wu, J.; Kaplaneris, N.; Ni, S.; Kaltenhauser, F.; Ackermann, L. Chem. Sci. 2020, 11, 6521.
[62] Boucard, V.; Larrieu, K.; Lubingermain, N.; Uziel, J.; Augé, J. Synlett 2003, 1834.
[63] Marjolein, V. D. K.; Eefjan, B.; Pieters, R. Beilstein J. Org. Chem. 2012, 8, 732.
[64] Parker, K. A.; Koh, Y. H. J. Am. Chem. Soc. 1994, 116, 11149.
[65] Yasuhito, K.; Ryo, Y.; Keisuke, S. Angew. Chem. Int. Ed. 2008, 120, 1100.
[66] Holzapfel, C. W.; Merwe, T. L. V. D. Tetrahedron Lett. 1996, 37, 2307.
[67] Pachamuthu, K.; Gupta, A.; Das, J.; Schmidt, R. R.; Vankar, Y. D. Eur. J. Org. Chem. 2002, 1479.
[68] Reddy, B. G.; Vankar, Y. D. Angew. Chem. Int. Ed. 2005, 44, 2001.
[69] Jayakanthan, K.; Vankar, Y. D. Tetrahedron Lett. 2006, 47, 8667.
[70] Zhang, T.; Yu, C.-Y.; Huang, Z.-T.; Jia, Y.-M. Synlett 2010, 2174.
[71] Vedachalam, S.; Shi, M. T.; Hui, P. T.; Cai, S.; Liu, X.-W. Org. Lett. 2012, 14, 174.
[72] (a) Delaunay, S.; Poisson, T.; Jubault, P.; Pannecoucke, X. Eur. J. Org. Chem. 2014, 3341.
(b) Verma, A. K.; Chennaiah, A.; Dubbu, S.; Vankar, Y. D. Carbohydr. Res. 2019, 473, 57
[73] Delaunay, T.; Poisson, T.; Jubault, P.; Pannecoucke, X. J. Fluorine. Chem. 2015, 171, 56.
[74] Bouwman, S.; Orru, R. V. A.; Ruijter, E. Org. Biomol. Chem. 2015, 13, 1317.
[75] (a) Lopez, J. C.; Fraser-Reid, B. J. Am. Chem. Soc. 1989, 111, 3450.
(b) Gomez, A. M.; Casillas, M.; Valverde, S.; Lopez, J. C. Tetrahedron:Asymmetry 2001, 12, 2175.
(c) Li, G.; Xiong, D.-C.; Ye, X.-S. Synlett 2001, 2410.
[76] (a) Moreno, B.; Quehen, C.; Rose-Helene, M.; Leclerc, E.; Quirion, J.-C. Org. Lett. 2007, 9, 2477.
(b) Colombel, S.; Van Hijfte, N.; Poisson, T.; Leclerc, E.; Pannecoucke, X. Chem.-Eur. J. 2013, 19, 12778.
[77] (a) Lo, J. C.; Gui, J.; Yabe, Y.; Pan, C.-M.; Baran, P. S. Nature 2014, 516, 343.
(b) Lo, J. C.; Kim, D.; Pan, C.-M.; Edwards, J. T.; Yabe, Y.; Gui, J.; Qin, T.; Gutiérrez, S.; Giacoboni, J.; Smith, M. W.; Holland, P. L.; Baran, P. S. J. Am. Chem. Soc. 2017, 139, 2484.
文章导航

/