研究专题

以三苯三戊并烯或窗茚满为核心的非平面纳米石墨烯

  • 吴振辉 ,
  • 王伟丞 ,
  • 叶皓宏 ,
  • 刘永华 ,
  • 孙晓庆 ,
  • 谢浩荣 ,
  • 何丽思 ,
  • 张以诺 ,
  • Dietmar Kuck ,
  • 周克勋
展开
  • a 香港中文大学化学系 中国香港;
    b 比勒费尔德大学化学系及分子材料中心(CM2) 德国比勒费尔德 33615

收稿日期: 2020-05-29

  修回日期: 2020-07-20

  网络出版日期: 2020-08-01

基金资助

香港特别行政区研资局(No.14303816)资助项目.

Nonplanar Nanographenes Based on Tribenzotriquinacene or Fenestrindane Core

  • Ng Chun-Fai ,
  • Wong Wai-Shing ,
  • Ip Ho-Wang ,
  • Lau Wing-Wa ,
  • Sun Xiao-Qing ,
  • Tse Ho-Wing ,
  • He Lisi ,
  • Cheung Enoch ,
  • Kuck Dietmar ,
  • Chow Hak-Fun
Expand
  • a Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China;
    b Department of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, 33615 Bielefeld, Germany

Received date: 2020-05-29

  Revised date: 2020-07-20

  Online published: 2020-08-01

Supported by

Project supported by the Research Grants Council of Hong Kong Special Administration Region (No. 14303816).

摘要

总结了我们近年合成的以三苯三戊并烯或窗茚满为骨架的非平面纳米石墨烯之研究成果.巫师帽形或鞍形的纳米石墨烯可由非经典的Scholl环庚三烯环化或19元环大环化反应制备.这些反应成功的关键是在这些分子的湾区区域引入恰当的富电子芳香官能团,通过X射线晶体学,一些纳米石墨烯的三维结构可以得到确定.此外,这些富含碳的π-共轭分子还显示出有趣的光物理、自缔合和主-客体络合的特性.

本文引用格式

吴振辉 , 王伟丞 , 叶皓宏 , 刘永华 , 孙晓庆 , 谢浩荣 , 何丽思 , 张以诺 , Dietmar Kuck , 周克勋 . 以三苯三戊并烯或窗茚满为核心的非平面纳米石墨烯[J]. 有机化学, 2020 , 40(10) : 3017 -3025 . DOI: 10.6023/cjoc202005083

Abstract

Our recent research efforts on the synthesis of nonplanar nanographenes bearing tribenzotriquinacene or fenestrindane skeleton are summarized. Wizard hat-shaped or saddle-shaped nanographenes could be prepared using a non-classical Scholl-type cycloheptatriene formation or 19-membered ring macrocyclization. The key to the success of these transformation relies on the proper installation of the electron rich aryl functional groups in the bay areas of these molecular motifs. The three-dimensional structures of some of the nanographenes were determined by X-ray crystallography. Furthermore, these carbon-rich π-conjugated molecules are also showed to have interesting photophysical, self-assoication and host-guest complexation properties.

参考文献

[1] Narita, A.; Wang, X.-Y.; Feng, X.; Müllen, K. Chem. Soc. Rev. 2015, 44, 6616.
[2] Segawa, Y.; Ito, H.; Itami, K. Nat. Rev. Mater. 2016, 1, 15002.
[3] Márquez, I. R.; Castro-Fernández, S.; Millána, A.; Campaña, A. G. Chem. Commun. 2018, 54, 6705.
[4] Higashibayashi, S.; Sakurai, H. In Polycyclic Arenes and Heteroarenes: Synthesis, Properties, and Applications, Ed.:Miao, Q., Wiley-VCH, Weinheim, 2016, p. 61.
[5] Cheung, K. Y.; Miao, Q. In Polycyclic Arenes and Heteroarenes: Synthesis, Properties, and Applications, Ed.:Miao, Q., Wiley-VCH, Weinheim, 2016, p. 85.
[6] Deng, C.-L.; Peng, X.-S.; Wong, H. N. C. In Polycyclic Arenes and Heteroarenes: Synthesis, Properties, and Applications, Ed.:Miao, Q., Wiley-VCH, Weinheim, 2016, p. 111.
[7] Yamago, S.; Kayahara, E.; Hashimoto, S. In Polycyclic Arenes and Heteroarenes: Synthesis, Properties, and Applications, Ed.:Miao, Q., Wiley-VCH, Weinheim, 2016, p. 143.
[8] Collins, S. K.; Grandbois, A.; Vachon, M. P.; Côté, J. Angew. Chem., Int. Ed. 2006, 45, 2923.
[9] Fujikawa, T.; Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2015, 137, 7763.
[10] Kashihara, H.; Asada, T.; Kamikawa, K. Chem.-Eur. J. 2015, 21, 6523.
[11] Tellenbröker, J.; Kuck. D. Angew. Chem., Int. Ed. 1999, 38, 919.
[12] Tellenbröker, J.; Kuck. D. Eur. J. Org. Chem. 2001, 1483.
[13] Kuck, D. Chem. Rev. 2006, 106, 4885.
[14] Kuck, D. Angew. Chem., Int. Ed. Engl. 1984, 23, 508.
[15] Kuck, D.; Lindenthal, T.; Schuster, A. Chem. Ber. 1992, 125, 1449.
[16] Kuck, D.; Schuster, A.; Krause, R. A.; Tellenbröker, J.; Exner, C. P.; Penk, M.; Bögge, H.; Müller, A. Tetrahedron 2001, 57, 3587.
[17] Kuck, D. Pure Appl. Chem. 2006, 78, 749.
[18] Brandenburg, J. G.; Grimme, S.; Jones, P. G.; Markopoulos, G.; Hopf, H.; Cyranski, M. K.; Kuck, D. Chem.-Eur. J. 2013, 19, 9930.
[19] Xu, W.-R.; Xia, G.-J.; Chow, H.-F.; Cao, X.-P.; Kuck, D. Chem.- Eur. J. 2015, 21, 12011.
[20] Strübe, J.; Neumann, B.; Stammler, H.-G.; Kuck, D. Chem.-Eur. J. 2009, 15, 2256.
[21] Klotzbach, S.; Scherpf, T.; Beuerle, F. Chem. Commun. 2014, 50, 12454.
[22] Klotzbach, S.; Beuerle, F. Angew. Chem., Int. Ed. 2015, 54, 10356.
[23] Beaudoin, D.; Rominger, F.; Mastalerz, M. Angew. Chem., Int. Ed. 2016, 55, 15599.
[24] Kirchwehm, Y.; Damme, A.; Kupfer, T.; Braunschweig, H.; Krueger, A. Chem. Commun. 2012, 48, 1502.
[25] Linke, J.; Bader, N.; Tellenbröker, J.; Kuck, D. Synthesis 2018, 50, 175.
[26] Kuck, D.; Linke, J.; Teichmann, L. C.; Barth, D.; Tellenbröker, J.; Gestmann, D.; Neumann, B.; Stammler, H.-G.; Bögge, H. Phys. Chem. Chem. Phys. 2016, 18, 11722.
[27] Mughal, E. U.; Kuck, D. Chem. Commun. 2012, 48, 8880.
[28] Scholl, R.; Mansfeld, J. Ber. Dtsch. Chem. Ges. 1910, 43, 1734.
[29] Grzybowski, M.; Skonieczny, K.; Butenschön, H.; Gryko, D. T. Angew. Chem., Int. Ed. 2013, 52, 9900.
[30] Grzybowski, M.; Sadowski, B.; Butenschön, H.; Gryko, D. T. Angew. Chem., Int. Ed. 2020, 59, 2998.
[31] Mughal, E. U.; Neumann, B.; Stammler, H.-G.; Kuck, D. Eur. J. Org. Chem. 2014, 2014, 7469.
[32] Rempala, P.; Kroulík, J.; King, B. T. J. Org. Chem. 2006, 71, 5067.
[33] King, B. T.; Kroulík, J.; Robertson, C. R.; Rempala, P.; Hilton, C. L.; Korinek, J. D.; Gortari, L. M. J. Org. Chem. 2007, 72, 2279.
[34] Ip, H.-W.; Ng, C.-F.; Chow, H.-F.; Kuck, D. J. Am. Chem. Soc. 2016, 138, 13778.
[35] Ip, H.-W.; Chow, H.-F.; Kuck, D. Org. Chem. Front. 2017, 4, 817.
[36] CCDC-1474467 contains the crystallographic data for 10.
[37] Fujioka, Y. Bull. Chem. Soc. Jpn. 1984, 57, 3494.
[38] Bieri, M.; Treier, M.; Cai, J.; Aїt-Mansour, K.; Ruffieux, P.; Gröning, O.; Gröning, P.; Kastler, M.; Rieger, R.; Feng, X.; Müllen, K.; Fasel, R. Chem. Commun. 2009, 6919.
[39] Liu, Y.; Narita, A.; Teyssandier, J.; Wagner, M.; De Feyter, S.; Feng, X.; Müllen, K. J. Am. Chem. Soc. 2016, 138, 15539.
[40] Idelson, A.; Sterzenbach, C.; Jester, S.-S.; Tschierske, C.; Baumeister, U.; Höger. S. J. Am. Chem. Soc. 2017, 139, 4429.
[41] Ikemoto, K.; Kobayashi, R.; Sato, S.; Isobe, H. Angew. Chem., Int. Ed. 2017, 56, 6511.
[42] He, L.; Ng, C.-F.; Li, Y.; Liu, Z.; Kuck, D.; Chow, H.-F. Angew. Chem., Int. Ed. 2018, 57, 13635.
[43] CCDC-1850232 contains the crystallographic data for 25.
[44] Majewski, M. A.; Hong, Y.; Lis, T.; Gregoliński, J.; Chmielewski, P. J.; Cybińska, J.; Kim, D.; Stępień, M. Angew. Chem., Int. Ed. 2016, 55, 14072.
[45] Kuck, D.; Bögge, H. J. Am. Chem. Soc. 1986, 108, 8107.
[46] Kuck, D. Chem. Ber. 1994, 127, 409.
[47] Kuck, D. In Advances in Theoretically Interesting Molecules, Vol. 4, Ed.:Thummel, R. P., JAI Press, Greenwich, London, 1998, p. 81.
[48] Kuck, D.; Schuster, A.; Krause, R. A. J. Org. Chem. 1991, 56, 3472.
[49] An, P.; Chow, H.-F.; Kuck, D. Synlett 2016, 27, 1255.
[50] Wong, W.-S.; Ng, C.-F.; Kuck, D.; Chow, H.-F. Angew. Chem., Int. Ed. 2017, 56, 12356.
[51] CCDC-1528883 contains the crystallographic data for 36.
[52] Wong, W.-S.; Lau, W.-W.; Li, Y.; Liu, Z.; Kuck, D.; Chow, H.-F. Chem.-Eur. J. 2020, 26, 4310.
[53] Smith, J. N.; Lucas, N. T. Chem. Commun. 2018, 54, 4716.
[54] Liu, X.; Weinert, Z. J.; Sharafi, M.; Liao, C.; Li, J.; Schneebeli, S. T. Angew. Chem., Int. Ed. 2015, 54, 12772.
[55] Wong, W.-S.; Tse, H.-W.; Cheung, E.; Kuck, D.; Chow, H.-F. J. Org. Chem. 2019, 84, 869.
文章导航

/