线粒体靶向过氧化氢荧光探针的研究进展
收稿日期: 2020-06-12
修回日期: 2020-07-08
网络出版日期: 2020-08-01
基金资助
国家自然科学基金(21878023); 国家自然科学基金(U1608222); 辽宁省特聘教授支持计划资助项目.
Research Progress in Mitochondrial Targeting Fluorescent Probes for Hydrogen Peroxide
Received date: 2020-06-12
Revised date: 2020-07-08
Online published: 2020-08-01
Supported by
the National Natural Science Foundation of China(21878023); the National Natural Science Foundation of China(U1608222); the Program for Distinguished Professor of Liaoning Province
控制线粒体过氧化氢的含量可以为细胞存活、生长、分化和维持发挥有益的作用. 然而, 线粒体过氧化氢的异常产生可能会破坏生物大分子以及细胞的结构, 导致老化、突变甚至癌症的发生. 因此, 迫切需要能够在活细胞中特别是在线粒体中对过氧化氢的水平变化进行有效监测的手段. 为此, 开发、设计了多种监测线粒体中过氧化氢水平变化的荧光探针. 以靶向基团结构为分类依据, 总结了近年来线粒体靶向过氧化氢荧光探针的研究进展, 介绍了三苯基膦鎓盐类探针、吡啶阳离子类探针、喹啉阳离子类探针、吲哚阳离子类探针和其他阳离子型探针, 总结了这些探针的结构、荧光行为及生物成像等. 这些荧光探针将成为疾病诊断和病理研究过程中有力的分子工具.
李娇娇 , 班立夫 , 汤立军 . 线粒体靶向过氧化氢荧光探针的研究进展[J]. 有机化学, 2021 , 41(1) : 241 -249 . DOI: 10.6023/cjoc202006023
Controlling the content of mitochondrial hydrogen peroxide can play a beneficial role in cell survival, growth, differentiation and maintenance. However, the abnormal production of mitochondrial hydrogen peroxide may destroy the structure of biological macromolecules and cells, and promote the occurrence of aging, mutation and even cancer. Therefore, there is an urgent need for means to effectively monitor changes in hydrogen peroxide levels in living cells, especially in mitochondria. To this end, a variety of fluorescent probes have been developed and designed to monitor changes in hydrogen peroxide levels in mitochondria. The recent progress in mitochondrial targeting fluorescent probes for hydrogen peroxide based on the structure of targeting groups is summarized, and triphenylphosphonium probes, pyridinium probes, quinolinium probes, indolium probes, and other cationic probes are introduced, including the structure, fluorescence behavior and biological imaging of these probes. These fluorescent probes will become powerful molecular tools in future disease diagnosis and pathological research.
[1] | Finkel T. Curr. Opin. Cell Biol. 2003, 15, 247. |
[2] | Stone J.R.; Yang S. Antioxid. Redox Signaling 2006, 8, 243. |
[3] | Zhang S.; Feng T.-T.; Zhang L.; Zhang M.-N. Chin. J. Anal. Chem. 2019, 47, 1664. (in Chinese) |
[3] | ( 张帅, 冯涛涛, 张丽, 张美宁, 分析化学, 2019, 47, 1664.). |
[4] | Reth M. Nat. Immunol. 2002, 3, 1129. |
[5] | Dickinson B.C.; Chang C.J. Nat. Chem. Biol. 2011, 7, 504. |
[6] | Veal E.; Day A. Antioxid. Redox Signaling 2011, 15, 147. |
[7] | Levitan I.; Volkov S.; Subbaiah P.V. Antioxid. Redox Signaling 2010, 13, 39. |
[8] | Brieger K.; Schiavone S.; Miller F.J.; Krause K.H. Swiss Med. Wkly. 2012, 142, w13659. |
[9] | Zheng D.-J.; Yang Y.-S.; Zhu H.-L. TrAC, Trends Anal. Chem. 2019, 118, 625. |
[10] | Zhang Y.; Dai M.; Yuan Z. Anal. Methods 2018, 10, 4625. |
[11] | Tang L.; Xia J.; Zhong K.; Tang Y.; Gao X.; Li J. Dyes Pigm. 2020, 178, 108379. |
[12] | Wen Y.; Huo F.; Yin C. Chin. Chem. Lett. 2019, 30, 1834. |
[13] | Zhang J.-D.; Liu H.-Z.; Meng L. Chin. J. Org. Chem. 2019, 39, 3132. (in Chinese) |
[13] | ( 张继东, 刘鸿泽, 孟丽, 有机化学, 2019, 39, 3132.). |
[14] | Tang L.; Zhou L.; Yan X.; Zhong K.; Gao X.; Li J. J. Photochem. Photobiol. A, 2020, 387, 112160. |
[15] | Yuan L.; Lin W.; Zheng K.; He L.; Huang W. Chem. Soc. Rev. 2012, 42, 622. |
[16] | Chan J.; Dodani S.C.; Chang C.J. Nat. Chem. 2012, 4, 973. |
[17] | Chen X.; Pradhan T.; Wang F.; Kim J.S.; Yoon J. Chem. Rev. 2012, 112, 1910. |
[18] | Zhang S.-X.; Niu Q.-M.; Wu S.-Z.; Lv H.-J.; Xing G.-W. Chin. J. Org. Chem. 2019, 39, 940. (in Chinese) |
[18] | ( 张晟曦, 牛晴旻, 吴松泽, 吕海娟, 邢国文, 有机化学, 2019, 39, 940.). |
[19] | Chen K.; Han B.-C.; Ji S.-X.; Sun J.; Gao Z.-Z.; Hou X.-F. Acta Chim. Sinica 2019, 77, 365. (in Chinese) |
[19] | ( 陈凯, 韩百川, 嵇思鑫, 孙瑾, 高振忠, 侯贤锋, 化学学报, 2019, 77, 365.). |
[20] | Banh S.; Treberg J.R. FEBS Lett. 2013, 587, 1799. |
[21] | Murphy M.P. Biochem. J. 2009, 417, 1. |
[22] | Dickinson B.C.; Srkun D.; Chang C.J. Curr. Opin. Chem. Biol. 2010, 14, 50. |
[23] | Bao L.; Avshalumov M.V.; Patel J.C.; Lee C.R.; Miller E.W.; Chang C.J.; Rice M.E. J. Neurosci. 2009, 29, 9002. |
[24] | Yang Q.; Wang S.; Li D.; Yuan J.; Xu J.; Shao S. Anal. Chim. Acta 2020, 1103, 202. |
[25] | Zhang R.; Niu G.; Liu Z.; Chau J.H.C.; Su H.; Lee M.M.S.; Gu Y.; Kwok R.T.K.; Lam J.W.Y.; Tang B.Z. Biomaterials 2020, 242, 119924. |
[26] | Yang Z.-G.; Xiong J.; Zhang W.; Li W.; Pan W.-H.; Zhang J.-G.; Gu Z.-Y.; Huang M.-N.; Qu J.-L. Acta Chim. Sinica 2020, 78, 130. (in Chinese) |
[26] | ( 杨志刚, 熊佳, 张炜, 李文, 潘文慧, 张建国, 顾振宇, 黄美娜, 屈军乐, 化学学报, 2020, 78, 130.). |
[27] | Horobin R.; Rashiddoubell F.; Pediani J.; Milligan G. Biotech. Histochem. 2013, 88, 440. |
[28] | Modicanapolitano J.S.; Aprille J.R. Adv. Drug Delivery Rev. 2001, 49, 63. |
[29] | He L.; Liu X.; Zhang Y.; Yang L.; Fang Q.; Geng Y.; Chen W.; Song X. Sens. Actuators B, 2018, 276, 247. |
[30] | Murphy M.P.; Smith R.A.J. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 629. |
[31] | Yousif L.F.; Stewart K.M.; Kelley S.O. ChemBioChem 2009, 10, 1939. |
[32] | Hardy M.; Chalier F.; Ouari O.; Finet J.P.; Rockenbauer A.; Kalyanaraman B.; Tordo P. Chem. Commun. 2007, 1083. |
[33] | Dickinson B.C.; Chang C.J. J. Am. Chem. Soc. 2008, 130, 9638. |
[34] | Masanta G.; Heo C.H.; Lim C.S.; Bae S.K.; Cho B.R.; Kim H.M. Chem. Commun. 2012, 48, 3518. |
[35] | Du F.; Min Y.; Zeng F.; Yu C.; Wu S. Small 2014, 10, 964. |
[36] | Xu K.; Qiang M.; Gao W.; Su R.; Li N.; Gao Y.; Xie Y.; Kong F.; Tang B. Chem. Sci. 2013, 4, 1079. |
[37] | Xiao Y.-F. M.S. Thesis, East China Normal University, Shanghai, 2016. (in Chinese) |
[37] | ( 肖瑜峰, 硕士论文, 华东师范大学, 上海,2016). |
[38] | Liu J.; Liang J.; Wu C.; Zhao Y. Anal. Chem. 2019, 91, 6902. |
[39] | Xu J.; Zhang Y.; Yu H.; Gao X.; Shao S. Anal. Chem. 2016, 88, 1455. |
[40] | Roopa; Kumar, N.; Bhalla, V.; Kumar, M. Chem. Commun. 2015, 51, 15614. |
[41] | Ren M.; Deng B.; Zhou K.; Kong X.; Wang J.; Lin W. Anal. Chem. 2016, 89, 552. |
[42] | Liu Y.; Niu J.; Nie J.; Meng F.; Lin W. New J. Chem. 2017, 41, 3320. |
[43] | Tang L.; Tian M.; Chen H.; Yan X.; Zhong K.; Bian Y. Dyes Pigm. 2018, 158, 482. |
[44] | Yang L.; Niu J.; Sun R.; Xu Y.; Ge J. Analyst 2018, 143, 1813. |
[45] | Li H.; Xin C.; Zhang G.; Han X.; Qin W.; Zhang C.; Yu C.; Jing S.; Li L.; Huang W. J. Mater. Chem. B 2019, 7, 4243. |
[46] | Wu Z.; Liu M.; Liu Z.; Tian Y. J. Am. Chem. Soc. 2020, 142, 7532. |
[47] | Li S.; Wang P.; Feng W.; Xiang Y.; Dou K.; Liu Z. Chem. Commun. 2020, 56, 1050. |
[48] | Xiao H.; Li P.; Hu X.; Shi X.; Zhang W.; Tang B. Chem. Sci. 2016, 7, 6153. |
[49] | Xie X.; Yang X.; Wu T.; Li Y.; Li M.; Tan Q.; Wang X.; Tang B. Anal. Chem. 2016, 88, 8019. |
[50] | Xu R.; Wang Y.; You H.; Zhang L.; Wang Y.; Chen L. Analyst 2019, 144, 2556. |
[51] | Xiao H.; Li P.; Zhang S.; Zhang W.; Zhang W.; Tang B. Chem. Commun. 2016, 52, 12741. |
[52] | Zhou L.; Ding H.; Zhao W.; Hu S. Spectrochim. Acta, Part A, 2019, 206, 529. |
[53] | Gu T.; Mo S.; Mu Y.; Huang X.; Hu L. Sens. Actuators B, 2020, 309, 127731. |
/
〈 |
|
〉 |