综述与进展

叔丁基亚磺酰胺在天然产物全合成中的应用

  • 李颖 ,
  • 马志强 ,
  • 徐学涛
展开
  • a 五邑大学生物科技与大健康学院 广东江门 529020;
    b 华南理工大学化学与化工学院 广东省功能分子工程重点实验室 广州 510641

收稿日期: 2020-06-15

  修回日期: 2020-07-23

  网络出版日期: 2020-08-01

基金资助

广东省教育厅基金基金(No.2019KZDXM035)资助项目.

Application of tert-Butanesulfinamide in Total Synthesis of Natural Products

  • Li Ying ,
  • Ma Zhiqiang ,
  • Xu Xuetao
Expand
  • a School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong 529020;
    b Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510641

Received date: 2020-06-15

  Revised date: 2020-07-23

  Online published: 2020-08-01

Supported by

Project supported by the Department of Education of Guangdong Province (No. 2019KZDXM035).

摘要

叔丁基亚磺酰胺由于性质稳定、商业可得、价格合理、使用方便及参与反应的立体选择性好等优点,受到化学家的广泛关注.总结了近年来利用手性叔丁基亚磺酰胺作为手性辅基诱导生成手性胺中间体在天然产物不对称全合成中的应用,主要分亲核试剂对叔丁基亚磺酰亚胺的加成及叔丁基亚磺酰基金属烯胺对亲电试剂的加成两部分进行介绍.

本文引用格式

李颖 , 马志强 , 徐学涛 . 叔丁基亚磺酰胺在天然产物全合成中的应用[J]. 有机化学, 2020 , 40(12) : 3991 -4014 . DOI: 10.6023/cjoc202006024

Abstract

The formation of chiral amine intermediates with chiral tert-butanesulfinamide and their applications in asymmetric natural product synthesis in recent years are summarized. tert-Butanesulfinamide has attracted wide attention from chemists because it is stable, commercially available with reasonable price, ease to use, and usually induces high diastereoselectivity in the reactions involved. This review is divided into two sections, including the addition of nucleophiles to N-tert-butanesulfinyl imines and the addition of N-tert-butanesulfinyl metalloenamines to electrophiles.

参考文献

[1] Liu, G.; Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1997, 119, 9913.
[2] (a) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984.
(b) Ellman, J. A. Pure Appl. Chem. 2003, 75, 39.
(c) Lin, G. Q.; Xu, M. H.; Zhong, Y. W.; Sun, X. W. Acc. Chem. Res. 2008, 41, 831.
(d) Ferreira, F.; Botuha, C.; Chemla, F.; Pérez-Luna, A. Chem. Soc. Rev. 2009, 38, 1162.
(e) Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem. Rev. 2010, 11, 3600.
(f) Liu, Q.; Hou, W. F.; Jing, Y. R.; Zhou, W.; Zhao, X. J. Prog. Pharm. Sci. 2013, 37, 493(in Chinese). (刘强, 侯文峰, 景云荣, 周微, 赵小军, 药学进展, 2013, 37, 493.)
(g) Zhu, Y. J.; Huan,Y. L.; Leng, W. D.; Wu, C. X.; Wang, B. Chin. J. Pharm. 2017, 48, 621(in Chinese). (朱怡君, 宦玉亮, 冷卫东, 伍成祥, 王兵, 中国医药工业杂志, 2017, 48, 621.)
[3] (a) Kochi, T.; Tang, T. P.; Ellman, J. A. J. Am. Chem. Soc. 2002, 124, 6518.
(b) Kochi, T.; Tang, T. P.; Ellman, J. A. J. Am. Chem. Soc. 2003, 125, 11276.
[4] Xu, H. C.; Chowdhury, S.; Ellman, J. A. Nat. Protoc. 2013, 8, 2271.
[5] Kościołowicz, A.; Rozwadowska, M. D. Tetrahedron:Asymmetry 2006, 17, 1444.
[6] Si, C.-M.; Mao, Z.-Y.; Dong, H.-Q.; Du, Z.-T.; Wei, B.-G.; Lin, G.-Q. J. Org. Chem. 2015, 80, 5824.
[7] Si, C.-M.; Mao, Z.-Y.; Liu, Y.-W.; Du, Z.-T.; Wei, B.-G.; Lin, G.-Q. Org. Chem. Front. 2015, 2, 1485.
[8] Kiemele, E. R.; Wathier, M.; Bichler, P.; Love, J. A. Org. Lett. 2016, 18, 492.
[9] Pinto, A.; Griera, R.; Molins, E.; Fernández, I.; Bosch, J.; Amat, M. Org. Lett. 2017, 19, 1714.
[10] Pinto, A.; Piccichè, M.; Griera, R.; Molins, E.; Bosch, J.; Amat, M. J. Org. Chem. 2018, 83, 8364.
[11] Taghizadeh, M. J.; Gohari, S. J. A.; Javidan, A.; Moghimi, A.; Iman, M. J. Iran. Chem. Soc. 2018, 15, 2175.
[12] (a) Fustero, S.; Monteagudo, S.; Sánchez-Roselló, M.; Flores, S.; Barrio, P.; del Pozo, C. Chem.-Eur. J. 2010, 16, 9835.
(b) Shen, X., Zhao; J., Xi, Y.; Chen, W.; Zhou, Y.; Yang, X.; Zhang, H. J. Org. Chem. 2018, 83, 14507.
(c) Prasad, K. R.; Rangari, V. A. Tetrahedron 2019, 75, 130496.
(d) Del Castillo, E.; Muñiz, K. Org. Lett. 2019, 21, 705.
[13] Chuang, K. V.; Navarro, R.; Reisman, S. E. Chem. Sci. 2011, 2, 1086.
[14] Toop, H. D.; Brusnahan, J. S.; Morris, J. C. Angew. Chem., Int. Ed. 2017, 56, 8536.
[15] Liu, H. J.; Shia, K. S.; Shang, X.; Zhu, B. Y. Tetrahedron 1999, 55, 3803.
[16] Uphade, M. B.; Reddy, A. A.; Khandare, S. P.; Prasad, K. R. Org. Lett. 2019, 21, 9109.
[17] Wang, Y.; He, Q. F.; Wang, H. W.; Zhou, X.; Huang, Z. Y.; Qin, Y. J. Org. Chem. 2006, 71, 1588.
[18] Chogii, I.; Njardarson, J. T. Angew. Chem., Int. Ed. 2015, 54, 13706.
[19] Chen, W.; Yang, X.; Tan, W.; Zhang, X.; Liao, X.; Zhang, H. Angew. Chem., Int. Ed. 2017, 56, 12327.
[20] Chen, W.; Ren, J.; Wang, M.; Dang, L.; Shen, X.; Yang, X.; Zhang, H. Chem. Commun. 2014, 50, 6259.
[21] (a) Zhang, S. X.; Shen, X. L.; Li, Z. Q.; Zou, L. W.; Wang, F. Q.; Zhang, H. B.; Shao, Z. H. J. Org. Chem. 2013, 78, 11444.
(b) Han-ya, Y.; Inui, T.; Yokoshima, S.; Tokuyama, H.; Fukuyama, T. Chem. Pharm. Bull. 2016, 64, 800.
[22] Kobayashi, S.; Ueda, T.; Fukuyama, T. Synlett 2000, 883.
[23] Al-Saffar, F. M.; Brown, R. C. D. Org. Lett. 2017, 19, 3502.
[24] Tang, T. P.; Ellman, J. A. J. Org. Chem. 2002, 67, 7819.
[25] (a) Cutter, A. C.; Miller, I. R.; Keily, J. F.; Bellingham, R. K.; Light, M. E.; Brown, R. C. Org. Lett. 2011, 13, 3988.
(b) Watkin, S. V.; Camp, N. P.; Brown, R. C. Org. Lett. 2013, 15, 4596.
[26] (a) Han, Z.; Krishnamurthy, D.; Senanayake, C. H. Org. Process Res. Dev. 2006, 10, 327.
(b) Tian, M.; Yan, M.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 14234.
(c) Wang, C.; Liu, Y. W.; Zhou, Z., Si; C. M., Sun, X.; Wei, B. G. Tetrahedron 2018, 74, 2158.
(d) Hugelshofer, C. L.; Palani, V.; Sarpong, R. J. Am. Chem. Soc. 2019, 141, 8431.
[27] Brak, K.; Ellman, J. A. Org. Lett. 2010, 12, 2004.
[28] Cai, S. L.; Yuan, B. H.; Jiang, Y. X.; Lin, G. Q.; Sun, X. W. Chem. Commun. 2017, 53, 3520.
[29] Chen, Y.-J.; Cai, S.-L.; Wang, C.-C.; Cheng, J.-D.; Kramer, S.; Sun, X.-W. Chem.-Asian J. 2017, 12, 1309.
[30] Voituriez, A.; Ferreira, F.; Perezluna, A.; Chemla, F. Org. Lett. 2007, 9, 470.
[31] Huang, P. Q.; Guo, Z. Q.; Ruan, Y. P. Org. Lett. 2006, 8, 1435.
[32] (a) Voituriez, A.; Ferreira, F.; Chemla, F. J. Org. Chem. 2007, 72, 5358.
(b) Louvel, J.; Botuha, C.; Chemla, F.; Demont, E.; Ferreira, F.; Pérez-Luna, A. Eur. J. Org. Chem. 2010, 2921.
(c) Louvel, J.; Chemla, F.; Demont, E.; Ferreira, F.; Pérez-una, A.; Voituriez, A. Adv. Synth. Catal. 2011, 353, 2137.
(d) Hélal, B.; Ferreira, F.; Botuha, C.; Chemla, F.; Perez-Luna, A. Synlett 2009, 3115.
[33] Mei, S.; Zhao, G. Eur. J. Org. Chem. 2010, 1660.
[34] Sirasani, G.; Andrade, R. B. Org. Lett. 2011, 13, 4736.
[35] González-Gómez, J. C.; Medjahdi, M.; Foubelo, F.; Yus, M. J. Org. Chem. 2010, 75, 6308.
[36] Medjahdi, M.; González-Gómez, J. C.; Foubelo, F.; Yus, M. Eur. J. Org. Chem. 2011, 2230.
[37] (a) Bosque, I.; González-Gómez, J. C.; Guijarro, A.; Foubelo, F.; Yus, M. J. Org. Chem. 2012, 77, 10340.
(b) Anton-Torrecillas, C.; González-Gómez, J. C. Org. Biomol. Chem. 2014, 12, 7018.
[38] Bonazzi, S.; Cheng, B.; Wzorek, J. S.; Evans, D. A. J. Am. Chem. Soc. 2013, 135, 9338.
[39] Shen, A.; Liu, M.; Jia, Z. S.; Xu, M. H.; Lin, G. Q. Org. Lett. 2010, 12, 5154.
[40] Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405.
[41] Zhao, S.; Sirasani, G.; Vaddypally, S.; Zdilla, M. J.; Andrade, R. B. Angew. Chem., Int. Ed. 2013, 52, 8309.
[42] Davies, S. G.; Fletcher, A. M.; Roberts, P. M.; Shah, R. S.; Thompson, A. L.; Thomson, J. E. Org. Lett. 2014, 16, 1354.
[43] Davies, S. G.; Fletcher, A. M.; Shah, R. S.; Roberts, P. M.; Thomson, J. E. J. Org. Chem. 2015, 80, 4017.
[44] Ye, J.; Zhang, Y.; Liu, Y.; Zhang, J.; Ruan, Y.; Huang, P. Org. Chem. Front. 2015, 2, 697.
[45] (a) Guo, L. D.; Liang, P.; Zheng, J. F.; Huang, P. Q. Eur. J. Org. Chem. 2013, 2230.
(b) Ye, J. L.; Chen, H.; Zhang, Y. F.; Huang, P. Q. Org. Chem. Front. 2016, 3, 683.
[46] Cai, S. L.; Song, R.; Dong, H. Q.; Lin, G. Q.; Sun, X. W. Org. Lett. 2016, 18, 1996.
[47] Liu, H.; Zhang, X.; Shan, D.; Pitchakuntla, M.; Ma, Y.; Jia, Y. Org. Lett. 2017, 19, 3323.
[48] Larock, R. C.; Yum, E. K.; Refvik, M. D. J. Org. Chem. 1998, 63, 7652.
[49] (a) Botuha, C.; Chemla, F.; Ferreira, F.; Perez Luna, A.; Roy, B. New J. Chem. 2007, 31, 1552.
(b) Chemla, F.; Ferreira, F.; Gaucher, X.; Palais, L. Synthesis 2007, 1235.
(c) Chemla, F.; Ferreira, F. Synlett 2006, 2613.
[50] Schkeryantz, J. M.; Woo, J. C. G.; Siliphaivanh, P.; Depew, K. M.; Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 11964.
[51] Bonazzi, S.; Cheng, B.; Wzorek, J. S.; Evans, D. A. J. Am. Chem. Soc. 2013, 135, 9338.
[52] (a) Beaumont, S.; Ilardi, E. A.; Monroe, L. R.; Zakarian, A. J. Am. Chem. Soc. 2010, 132, 1482.
(b) Gu, Z.; Zakarian, A. Angew. Chem., Int. Ed. 2010, 49, 9702.
(c) Wen, S.; Carey, K. L.; Nakao, Y.; Fusetani, N.; Packham, G.; Ganesan, A. Org. Lett. 2007, 9, 1105.
(d) Wang, J.; Li, W.; Liu, L.; Wang, B.; Zhou, Y.; Huang, S.; Wang, X. Org. Chem. Front. 2019, 6, 1599.
(e) Babij, N. R.; Wolfe, J. P. Angew. Chem., Int. Ed. 2012, 51, 4128.
(f) Zhang, S.-J.; Li, X.-T.; Wang, Y.; Zheng, Y.-C.; Han, S.-Q.; Yu, H.-L.; Huang, S.-H. Chin. J. Org. Chem. 2020, 40, 521(in Chinese). (张世举, 李晓彤, 王燕, 郑宇璁, 韩世清, 郁惠蕾, 黄莎华, 有机化学, 2020, 40, 521.)
[53] Zhang, L.; Zhang, Y.; Li, W.; Qi, X. Angew. Chem., Int. Ed. 2019, 58, 4988.
[54] (a) Chen, B.; Liu, X.; Hu, Y.-J.; Zhang, D.-M.; Deng, L.; Lu, J.; Min, L.; Ye, W.-C.; Li, C.-C. Chem. Sci. 2017, 8, 4961.
(b) Ryan, D. A.; Okolotowicz, K. J.; Mercola, M.; Cashman, J. R. Tetrahedron Lett. 2015, 56, 4195.
(c) Zhu, Y.; Li, H.; Lin, K.; Wang, B.; Zhou, W. Synth. Commun. 2019, 49, 1721.
[55] Zhong, Y.-W.; Dong, Y.-Z.; Fang, K.; Izumi, K.; Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. 2005, 127, 11956.
[56] Wang, R.; Fang, K.; Sun, B.-F.; Xu, M.-H.; Lin, G.-Q. Synlett 2009, 2301.
[57] Si, C.-M.; Liu, Y.-W.; Mao, Z.-Y.; Han, P.; Du, Z.-T.; Wei, B.-G. Tetrahedron 2016, 72, 8091.
[58] (a) Liu, R. C.; Wei, J. H.; Wei, B. G.; Lin, G. Q. Tetrahedron:Asymmetry 2008, 19, 2731.
(b) Xarnod, C.; Huang, W.; Ren, R. G.; Liu, R. C.; Wei, B. G. Tetrahedron 2012, 68, 6688.
(c) Zhou, W.; Nie, X.-D.; Zhang, Y.; Si, C.-M.; Zhou, Z.; Sun, X.; Wei, B.-G. Org. Biomol. Chem. 2017, 15, 6119.
[59] Kochi, T.; Ellman, J. A. J. Am. Chem. Soc. 2004, 126, 15652.
[60] Peltier, H. M.; Mcmahon, J. P.; Patterson; A, W.; Ellman, J. A. J. Am. Chem. Soc. 2006, 128, 16018.
[61] Nicolaou, K. C.; Estrada, A. A.; Zak, M.; Lee, S. H.; Safina, B. S. Angew. Chem., Int. Ed. 2005, 44, 1378.
[62] Zhao, S.; Andrade, R. B. J. Am. Chem. Soc. 2013, 135, 13334.
[63] Wang, X.; Xia, D.; Tan, L.; Chen, H.; Huang, H.; Song, H.; Qin, Y. Chem.-Eur. J. 2015, 21, 14602.
[64] Kokkonda, P.; Andrade, R. B. Org. Lett. 2019, 21, 9594.
[65] Amat, M.; Alvarez, M.; Bonjoch, J.; Casamitjana, N.; Gràcia, J.; Lavilla, R.; Garcías, X.; Bosch, J. Tetrahedron Lett. 1990, 31, 3453.
[66] (a) Kazak, M.; Priede, M.; Shubin, K.; Bartrum, H. E., Poisson, J. F.; Suna, E. Org. Lett. 2017, 19, 5356.
(b) Jung, H. H.; Floreancig, P. E. J. Org. Chem. 2007, 72, 7359.
文章导航

/