研究论文

四丁基溴化铵催化的布鲁克重排/烷基化反应

  • 韩满意 ,
  • 潘虹 ,
  • 姚紫云 ,
  • 李琦
展开
  • 淮北师范大学化学与材料科学学院 安徽淮北 235000

收稿日期: 2020-05-31

  修回日期: 2020-07-11

  网络出版日期: 2020-08-06

基金资助

国家自然科学基金(No.21602073)、安徽省自然科学基金(No.1708085QB39)和安徽省青年皖江学者资助项目.

n-Bu4NBr Catalyzed Brook Rearrangement/Alkylation Reaction

  • Han Man-Yi ,
  • Pan Hong ,
  • Yao Ziyun ,
  • Li Qi
Expand
  • School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000

Received date: 2020-05-31

  Revised date: 2020-07-11

  Online published: 2020-08-06

Supported by

Project supported by the National Natural Science Foundation of China (No. 21602073), the Natural Science Foundation of Anhui Province (No. 1708085QB39) and the Young Scholars in Wanjiang Scholars Program of Anhui Province.

摘要

以四丁基溴化铵作为相转移催化剂,开发了α-硅醇化合物的一种新型布鲁克重排/烷基化反应.多种结构类型的α-硅醇化合物都适用于该反应,高产率(产率高达71%)地合成了具有季碳中心的反应产物.此外,通过酯基官能团的吸电子作用可以稳定布鲁克重排之后生成的碳负离子,而竞争性的布鲁克重排/质子化反应被抑制.

本文引用格式

韩满意 , 潘虹 , 姚紫云 , 李琦 . 四丁基溴化铵催化的布鲁克重排/烷基化反应[J]. 有机化学, 2020 , 40(12) : 4274 -4283 . DOI: 10.6023/cjoc202005093

Abstract

A novel Brook rearrangement/alkylation reaction sequence of tertiary α-silyl alcohols has been developed using n-Bu4NBr as the phase transfer catalyst (PTC). A number of tertiary α-silyl alcohols are applicable to the reaction, affording the products with a quaternary carbon center in high yields (up to 71%). Moreover, the carbanions generated after the Brook rearrangement could be stabilized by the electron-withdrawing group, depressing the Brook rearrangement/protonation reaction.

参考文献

[1] Brook, A. G. J. Am. Chem. Soc. 1958, 80, 1886.
[2] For selected reviews, see:(a) Lee, N.; Tan, C.-H. Asian J. Org. Chem. 2019, 8, 25.
(b) Yabushita, K.; Yuasa, A.; Nagao, K.; Ohmiya, H. J. Am. Chem. Soc. 2019, 141, 113.
(c) Eppe, G.; Didier, D.; Marek, I. Chem. Rev. 2015, 115, 9175.
(d) Zhang, H. -J.; Priebbenow, D. L.; Bolm, C. Chem. Soc. Rev. 2013, 42, 8540.
(e) Boyce, G. R.; Greszler, S. N.; Johnson, J. S.; Linghu, X.; Malinowski, J. T.; Nicewicz, D. A.; Satterfield, A. D.; Schmitt, D. C.; Steward, K. M. J. Org. Chem. 2012, 77, 4503.
(f) Smith, III, A. B., Wuest, W. M. Chem. Commun. 2008, 45, 5883.
(g) Moser, W. H. Tetrahedron 2001, 57, 2065.
(h) Bonini, B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti, G.; Ricci, A. J. Organomet. Chem. 1998, 567, 181.
(i) Bulman-Page, P. C.; Klair, S. S.; Rosenthal, S. Chem. Soc. Rev. 1990, 19, 147.
(j) Brook, A. G. Acc. Chem. Res. 1974, 7, 77.
[3] Greszler, S. N.; Johnson, J. S. Org. Lett. 2009, 11, 827.
[4] Greszler, S. N.; Johnson, J. S. Angew. Chem., Int. Ed. 2009, 48, 3689.
[5] For selected examples, see:(a) Yao, M.; Lu, C.-D. Org. Lett. 2011, 13, 2782.
(b) Han, X.-J.; Yao, M.; Lu, C.-D. Org. Lett. 2012, 14, 2906.
[6] Luzzio, F. A. Tetrahedron 2001, 57, 915.
[7] For selected reviews and examples, see:(a) Adero, P. O.; Amarasekara, H.; Wen. P.; Bohé L.; Crich, D. Chem. Rev. 2018, 118, 8242.
(b) Hamlin, T. A.; Swart, M. F.; Bickelhaupt, M. ChemPhysChem 2018, 19, 1315.
(c) Fu, G. C. ACS Cent. Sci. 2017, 3, 692.
(d) Phan, T. B.; Nolte, C.; Kobayashi, S.; Ofial, A. R.; Mayr, H. J. Am. Chem. Soc. 2009, 131, 11392.
(e) Marshall, J. A. Chem. Rev. 1989, 89, 1503.
[8] Kato, M.; Mori, A.; Oshino, H.; Enda, J.; Kobayashi, K.; Kuwajima, I. J. Am. Chem. Soc. 1984, 106, 1773.
[9] Collados, J. F.; Ortiz, P.; Perez, J. M.; Xia, Y.; Koenis, M. A. J.; Buma, W. J.; Nicu, V. P.; Harutyunyan, S. R. Eur. J. Org. Chem. 2018, 2018, 3900.
[10] For selected reviews and examples, see:(a) Collados, J. F.; Ortiz, P.; Harutyunyan, S. R. Eur. J. Org. Chem. 2016, 3065.
(b) Leibeling, M.; Shurrush, K. A.; Werner, V.; Perrin, L.; Marek, I. Angew. Chem., Int. Ed. 2016, 55, 6057.
[11] For selected reviews and examples, see:(a) Zong, L.; Tan, C.-H. Acc. Chem. Res. 2017, 50, 842.
(b) Albanese, D. C. M.; Foschi, F.; Penso, M. Org. Process Res. Dev. 2016, 20, 129.
(c) Kaneko, S.; Kumatabara, Y.; Shirakawa, S. Org. Biomol. Chem. 2016, 14, 5367.
(d) Shirakawa, S.; Maruoka, K. Angew. Chem., Int. Ed. 2013, 52, 4312.
(e) Takeda, K.; Ohnishi, Y. Tetrahedron Lett. 2000, 41, 4169.
(f) Ando, M.; Sasaki, M.; Miyashita, I.; Takeda, K. J. Org. Chem. 2015, 80, 247.
[12] For selected examples, see:(a) Han, M.-Y.; Pan, H.; Li, P.; Wang, L. J. Org. Chem. 2020, 85, 5825.
(b) Pan, H.; Han, M.-Y.; Li, P.; Wang, L. J. Org. Chem. 2019, 84, 14281.
(c) Han, M.-Y.; Luan, W.-Y.; Mai, P.-L.; Li, P.; Wang, L. J. Org. Chem. 2018, 83, 1518.
(d) Han, M.-Y.; Lin, J.; Li, W.; Luan, W.-Y.; Mai, P.-L.; Zhang, Y. Green Chem. 2018, 20, 1228.
(e) Han, M.-Y.; Pan, H.; Lin, J.; Li, W.; Li, P.; Wang, L. Org. Biomol. Chem. 2018, 16, 4117.
(f) Han, M.-Y.; Xie, X.; Zhou, D.; Li, P.; Wang, L. Org. Lett. 2017, 19, 2282.
(g) Han, M.-Y.; Yang, F.-Y.; Zhou, D.; Xu, Z. Org. Biomol. Chem. 2017, 15, 1418.
[13] For selected examples, see:(a) Deng, Y.; Liu, Q.; Smith, III, A. B. J. Am. Chem. Soc. 2017, 139, 9487.
(b) Zhang, F.-G.; Marek, I. J. Am. Chem. Soc. 2017, 139, 8364.
(c) Zhang, H.; Ma, S.; Yuan, Z.; Chen, P.; Xie, X.; Wang, X.; She, X. Org. Lett. 2017, 19, 3478.
(d) Lin, C.-Y.; Sun, Z.; Xu, Y.-J.; Lu, C.-D. J. Org. Chem. 2015, 80, 3714.
(e) Liu, B.; Lu, C. D. J. Org. Chem. 2011, 76, 4205.
(f) Smith, III, A. B.; Xian, M.; Kim, W.-S.; Kim, D.-S. J. Am. Chem. Soc. 2006, 128, 12368.
(g) Jung, M. E.; Nichols, C. J. J. Org. Chem. 1996, 61, 9065.
文章导航

/