研究论文

无催化剂条件下可见光诱导硝基烯烃磺酰化合成乙烯基砜

  • 陈德茂 ,
  • 孙媛媛 ,
  • 董道青 ,
  • 韩晴晴 ,
  • 王祖利
展开
  • 青岛农业大学化学与药学院 山东青岛 266109

收稿日期: 2020-06-15

  修回日期: 2020-07-29

  网络出版日期: 2020-08-06

基金资助

国家自然科学基金(No.21772107)、山东省重点研发计划(No.2019GSF108017)资助项目.

Visible-Light Induced Sulfonylation of Nitroolefins for the Synthesis of Vinyl Sulfones under Photocatalyst Free Conditions

  • Chen Demao ,
  • Sun Yuanyuan ,
  • Dong Daoqing ,
  • Han Qingqing ,
  • Wang Zuli
Expand
  • College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109

Received date: 2020-06-15

  Revised date: 2020-07-29

  Online published: 2020-08-06

Supported by

Project supported by the National Natural Science Foundation of China (No. 21772107), and the Key Research and Development Plan of Shandong Province (No. 2019GSF108017).

摘要

开发了一种环境友好的可见光诱导的方法,该方法是在无光催化剂的条件下,由硝基烯烃与亚磺酸反应合成乙烯基砜.操作简单,反应条件温和,底物范围广,目标产物收率高,使得这种方法前景广阔.活性测试表明,部分目标化合物对苹果腐烂菌与柑橘炭疽病菌具有中等以上的抑制率.

本文引用格式

陈德茂 , 孙媛媛 , 董道青 , 韩晴晴 , 王祖利 . 无催化剂条件下可见光诱导硝基烯烃磺酰化合成乙烯基砜[J]. 有机化学, 2020 , 40(12) : 4267 -4273 . DOI: 10.6023/cjoc202006025

Abstract

An eco-friendly visible light-induced approach for the synthesis of vinyl sulfones from the reaction of nitroolefins with sulfinic acid under photocatalyst free conditions was developed. Simple operation, mild reaction conditions, broad substrate scope and good yields of the desired products made this transformation have an excellent prospect. The anti-microbial activity test showed that some of the desired products had moderate inhibitory rate against V. mali and C. glecosporioides.

参考文献

[1] (a) Fung, E.; Chua, K.; Ganz, T.; Nemeth, E.; Ruchala, P. Bioorg. Med. Chem. Lett. 2015, 25, 763.
(b) Lavecchia, A.; Di Giovanni, C.; Pesapane, A.; Montuori, N.; Ragno, P.; Martucci, N. M.; Masullo, M.; De Vendittis, E.; Novellino, E. J. Med. Chem. 2012, 55, 4142.
(c) Nakao, Y.; Fusetani, N. J. Nat. Prod. 2007, 70, 689.
(d) Goudou, F.; Petit, P.; Moriou, C.; Gros, O.; Al-Mourabit, A. J. Nat. Prod. 2017, 80, 1693.
(e) Gordon, C. P.; Griffith, R.; Keller, P. A. Med. Chem. 2007, 3, 199.
(f) Meadows, D. C.; Sanchez, T.; Neamati, N.; North, T. W.; Hague, J. G. Bioorg. Med. Chem. 2007, 15, 1127.
[2] (a) Simpkins, N. S. Tetrahedron 1990, 46, 6951.
(b) Chen, G.-Y.; Lu, Y. Synthesis 2013, 45, 1654.
(c) Cheng, F.; Wang, H.; He, W.; Sun, B.; Zhao, J.; Qu, J.; Wang, Q. ACS Sustainable Chem. Eng. 2019, 7, 9112.
[3] (a) Truce, W. E.; Goralski, C. T. J. Org. Chem. 1971, 36, 2536.
(b) Posner, G. H.; Brunelle, D. J. J. Org. Chem. 1972, 37, 3547.
(c) Hoogenboom, B. E.; ElFaghi, M. S.; Fink, S. C.; Ihrig, P. I.; Langsjoen, A. N.; Linn, C. J.; Maehling, K. L. J. Org. Chem. 1975, 40, 880.
(d) Back, T. G.; Collins, S.; Krishna, M. V.; Law, K. W. J. Org. Chem. 1987, 52, 4258.
(e) Kamigata, N.; Sawada, H.; Kobayashi, M. J. Org. Chem. 1983, 48, 3793.
(f) Huang, X.; Duan, D.; Zheng, W. J. Org. Chem. 2003, 69, 1958.
(g) Guan, Z. H.; Zuo, W.; Zhao, L. B.; Ren, Z. H.; Liang, Y. M. Synthesis 2007, 1465.
(h) Ochiai, M.; Kitagawa, Y.; Toyonari, M.; Uemura, K.; Oshima, K.; Shiro, M. J. Org. Chem. 1997, 62, 8001.
(i) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Parisi, L. M.; Bernini, R. J. Org. Chem. 2004, 69, 5608.
(j) Battace, A.; Zair, T.; Doucet, H.; Santelli, M. Synthesis 2006, 3495.
(k) Bian, M.; Xu, F.; Ma, C. Synthesis 2007, 2951.
(l) Truce, W.; Wolf, G. C. J. Org. Chem. 1971, 36, 1727.
(m) Amiel, Y. J. Org. Chem. 1970, 36, 3691.
(n) Peng, L.; Hu, Z.; Tang, Z.; Jiao, Y.; Xu, X. Chin. Chem. Lett. 2019, 30, 1481.
(o) Keshari, T.; Kapoorr, R.; Yadav, L. D. S. Eur. J. Org. Chem. 2016, 2695.
[4] (a) Nair, V.; Augustine, A.; George, T. G.; Nair, L. G. Tetrahedron Lett. 2001, 42, 6763.
(b) Katrun, P.; Chiampanichayakul, S.; Korworapan, K.; Pohmakotr, M.; Reutrakul, V.; Jaipetch, T.; Kuhakarn, C. Eur. J. Org. Chem. 2010, 2010, 5633.
(c) Kamigata, N.; Sawada, H.; Kobayashi, M. J. Org. Chem. 1983, 48, 3793.
(d) Taniguchi, N. Synlett 2011, 1308.
(e) Nair, V.; Augustine, A.; Suja, T. D. Synthesis 2002, 2259.
(f) Das, B.; Lingaiah, M.; Damodar, K.; Bhunia, N. Synthesis 2011, 2941.
(g) Sawangphon, T.; Katrun, P.; Chaisiwamongkhol, K.; Pohmakotr, M.; Reutrakul, V.; Jaipetch, T.; Soorukram, D.; Kuhakarn, C. Synth. Commun. 2013, 43, 1692.
(h) Tang, S.; Wu, Y.; Liao, W.; Bai, R.; Liu, C.; Lei, A. Chem. Commun. 2014, 50, 4496.
(i) Zhang, N.; Yang, D.; Wei, W.; Yuan, L.; Cao, Y.; Wang, H. RSC Adv. 2015, 5, 37013.
(j) Luo, Y. C.; Pan, X. J.; Yuan, G. Q. Tetrahedron 2015, 71, 2119.
(k) Xue, Q.; Mao, Z.; Shi, Y.; Mao, H.; Cheng, Y.; Zhu, C. Tetrahedron Lett. 2012, 53, 1851.
(l) Chawla, R.; Kapoor, R.; Singh, A. K.; Yadav, L. D. S. Green Chem. 2012, 14, 1308.
(m) Liang, S.; Zhang, R. Y.; Wang, G.; Chen, S. Y.; Yu, X. Q. Eur. J. Org. Chem. 2013, 2013, 7050.
(n) Katrun, P.; Hlekhlai, S.; Meesin, J.; Pohmakotr, M.; Reutrakul, V.; Jaipetch, T.; Soorukrama, D.; Kuhakarn, C. Org. Biomol. Chem. 2015, 13, 4785
(o) Taniguchi, N. Tetrahedron 2014, 70, 1984.
[5] Nie, G.; Deng, X. C.; Lei, X.; Hu, Q. Q.; Chen, Y. F. RSC Adv. 2016, 6, 75277.
[6] Zhan, Z. Z.; Ma, H. J.; Wei, D. D.; Pu, J. H.; Zhang, Y. X.; Huang, G. S. Tetrahedron Lett. 2018, 59, 1446.
[7] Zhao, Y.; Lai, Y. L.; Du, K. S.; Lin, D. Z.; Huang, J. M. J. Org. Chem. 2017, 82, 9655.
[8] Rong, G. W.; Mao, J. C.; Yan, H.; Zheng, Y.; Zhang, G. Q. J. Org. Chem. 2015, 80, 4697.
[9] Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.
[10] (a) Chen, Y. Y.; Lu, L. Q.; Yu, D. G.; Zhu, C. J.; Xiao, W. J. Sci. China Chem. 2019, 62, 24-57.
(b) Luo, K.; Yang, W. C.; Wu, L. Asian J. Org. Chem. 2017, 6, 350.
(c) Huang, C.; Li, X. B.; Tung, C. H.; Wu, L. Z. Chem.-Eur. J. 2018, 24, 11530.
(d) Chen, Y.; Zhao, H.; Cheng, D.; Li X.; Xu X. Chin. J. Org. Chem. 2020, 40, 1297(in Chinese). (陈跃峰, 赵赫, 程冬萍, 李小年, 许孝良, 有机化学, 2020, 40, 1297.)
(e) Capaldo, L.; Ravelli, D. Eur. J. Org. Chem. 2017, 2056.
(f) Chen, J. R.; Yan, D. M.; Wei, Q.; Xiao, W. J. ChemPhotoChem 2017, 1, 148.
(g) Peng, S.; Lin, Y.; He, W. Chin. J. Org. Chem. 2020, 40, 541(in Chinese). (彭莎, 林英武, 何卫民, 有机化学, 2020, 40, 541.)
(h) Chen, L.; Liang, J.; Chen, Z. Y.; Chen, J.; Yan, M.; Zhang, X. J. Adv. Synth. Catal. 2019, 361, 956.
(i) Dong, D. Q.; Li, L. X.; Li, G. H.; Deng, Q.; Wang, Z. L.; Long, S. Chin. J. Catal. 2019, 40, 1494.
(j) Kong, Y.; Xu, W.; Ye, F.; Weng, J. Chin. J. Org. Chem. 2019, 39, 3065(in Chinese). (孔瑶蕾, 徐雯秀, 叶飞霞, 翁建全, 有机化学, 2019, 39, 3065.)
(k) Xiao, L.; Li, J.; Wang, T. Acta Chim. Sinica 2019, 77, 841.
(l) Chen, Y.; Chang, L.; Zuo, Z. Acta Chim. Sinica 2019, 77, 794.
(m) Yuan, Y.; Dong, W. H.; Gao, X. S.; Xie, X. M.; Curran, D. P.; Zhang, Z. G. Chin. J. Chem. 2018, 36, 1035.
(o) Wang, D. H.; Zhang, L.; Luo, S. Z. Chin. J. Chem. 2018, 36, 311.
[11] (a) Zhu, J.; Yang, W. C.; Wang, X. D.; Wu, L. Adv. Synth. Catal. 2018, 360, 386.
(b) Li, Y.; Miao, T.; Li, P. H.; Wang, L. Org. Lett. 2018, 20, 1735.
(c) Xie, L. Y.; Fang, T. G.; Tan, J. X.; Zhang, B.; Cao, Z.; Yang, L. H.; He, W. M. Green Chem. 2019, 21, 3858.
(d) Dong, D. Q.; Hao, S. H.; Yang, D. S.; Li, L. X.; Wang, Z. L. Eur. J. Org. Chem. 2017, 2017, 6576.
(e) Li, G.; Gan, Z.; Kong, K.; Dou, X.; Yang, D. Adv. Synth. Catal. 2019, 361, 1808.
(f) Qiu, G. Y. S.; Li, Y. W.; Wu, J. Org. Chem. Front. 2016, 3, 1011.
(g) Lima, C. G. S.; Lima, T. D. M.; Duarte, M.; Jurberg, I. D.; Paixão, M. W. ACS Catal. 2016, 6, 1389.
(h) Duan, K.; Yan, X. F.; Liu, Y. J.; Li, Z. D. Adv. Synth. Catal. 2018, 360, 2781.
(i) Xie, L. Y.; Chen, Y. L.; Qin, L.; Wen, Y.; Xie, J. W.; Tan, J. X.; Huang, Y.; Cao, Z.; He, W. M. Org. Chem. Front. 2019, 6, 3950.
[12] Guo, W.; Tao, K. L.; Tan, W.; Zhao, M. M.; Zheng, L. Y.; Fan, X. L. Org. Chem. Front. 2019, 6, 2048.
[13] Zhu, X. J.; Xie, X. Y.; Li, P. H.; Guo, J. Q.; Wang, L. Org. Lett. 2016, 18, 1546.
[14] Yang, D.; Huang, B.; Wei, W.; Li, J.; Lin, G.; Liu, Y.; Ding, J.; Sun, P.; Wang, H. Green Chem. 2016, 18, 5630.
[15] Meyer, A. U.; Jäger, S.; Hari, D. P.; König, B. Adv. Synth. Catal. 2015, 357, 2050.
[16] Liu, X.; Cong, T.; Liu, P.; Sun, P. Org. Biomol. Chem. 2016, 14, 9416.
[17] (a) Cai, S.; Xu, Y.; Chen, D.; Li, L.; Chen, Q.; Huang, M.; Weng, W. Org. Lett. 2016, 18, 2990.
(b) Dong, D. Q.; Chen, D. M.; Sun, Y. Y.; Han, Q. Q.; Wang, Z. L.; Xu, X. M.; Yu, X. Y. Chin. J. Org. Chem. 2020, 40, 1766(in Chinese). (董道青, 李光辉, 陈德茂, 孙媛媛, 韩晴晴, 王祖利, 徐鑫明, 于贤勇, 有机化学, 2020, 40, 1766.)
(c) Yan, S.; Dong, D. Q.; Xie, C.; Wang, W.; Wang, Z. L. Chin. J. Org. Chem. 2019, 39, 2560.
(d) Li, G. H.; Han, Q. Q.; Sun, Y. Y.; Chen, D. M.; Wang, Z. L.; Xu, X. M.; Yu, X. Y. Chin. Chem. Lett., 2020, 31, 3255.
(e) Li, G. H.; Dong, D. Q.; Deng, Q.; Yan, S. Q.; Wang, Z. L. Synthesis 2019, 51, 3313.
(f) Dong, D. Q.; Chen, W. J.; Yang, Y.; Gao, X.; Wang, Z. L. ChemistrySelect 2019, 4, 2480.
(g) Li, G. H.; Dong, D. Q.; Yu, X. Y.; Wang, Z. L. New J. Chem. 2019, 43, 1667.
(h) Li, G. H.; Dong, D. Q.; Yang, Y.; Yu, X. Y.; Wang, Z. L. Adv. Synth. Catal. 2019, 361, 832.
(i) Dong, D.; Sun, Y.; Li, G.; Yang, H.; Wang, Z.; Xu, X. Chin. J. Org. Chem. 2020, 40, 4071(in Chinese). (董道青, 孙媛媛, 李光辉, 杨欢, 王祖利, 徐鑫明, 有机化学, 2020, 40, 4071.)
(j) Han, Q. Q.; Li, G. H.; Sun, Y. Y.; Chen, D. M.; Wang, Z. L.; Yu, X. Y.; Xu, X. M. Tetrahedron Lett. 2020, 61, 151704.
(k) Dong, D. Q.; Yang, H.; Shi, J. L.; Si, W. J.; Wang, Z. L.; Xu, X. M. Org. Chem. Front. 2020, 7, 2538.
[18] Hong, G. F.; Yuan, J. W.; Dong, Z. H.; Xiao, Y. M.; Mao, P.; Qu, L. B., Phosphorus Sulfur 2018, 193, 771.
[19] Gui, Q. W.; Han, K.; Liu, Z. L.; Su, Z. H.; He, X. L.; Jiang, H. M.; Tian, B. F.; Li, Y. Y. Org. Biomol. Chem. 2018, 16, 5748.
[20] Baliah, V.; Seshapathirao, M. J. Org. Chem. 1959, 24, 867.
[21] Chen, H.; Wedi, P.; Meyer, T.; Tavakoli, G.; van Gemmeren, M. Angew. Chem., Int. Ed. 2018, 57, 2497.
[22] Hu, D. Q.; Bai, F. C.; Liu, Y. Y.; Wan, J. P. Chin. J. Chem. 2016, 34, 1053.
[23] Chen, J.; Mao, J. C.; Zheng, Y.; Liu, D. F.; Rong, G. W.; Yan, H.; Zhang, C.; Shi, D. Q. Tetrahedron 2015, 71, 5059.
[24] Mao, S.; Gao, Y. R.; Zhu, X. Q.; Guo, D. D.; Wang, Y. Q. Org. Lett. 2015, 17, 1692.
[25] Aegurla, B.; Peddinti, R. K. Asian J. Org. Chem. 2018, 7, 946.
文章导航

/