综述与进展

用于可切换不对称催化的人工刺激响应催化体系

  • 唐雨平 ,
  • 何艳梅 ,
  • 范青华
展开
  • a 中国科学院化学研究所 中国科学院分子识别与功能重点实验室 北京分子科学国家研究中心 北京 100190;
    b 中国科学院大学化学科学学院 北京 100049

收稿日期: 2020-06-30

  修回日期: 2020-08-03

  网络出版日期: 2020-08-11

基金资助

国家自然科学基金(Nos.21772204,21521002)和中国科学院前沿科学重点研究(No.QYZDJ-SSW-SLH023)资助项目.

Artificial Stimuli-Responsive Catalytic Systems for Switchable Asymmetric Catalysis

  • Tang Yuping ,
  • He Yanmei ,
  • Fan Qinghua
Expand
  • a Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences(CAS), Beijing 100190;
    b School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049

Received date: 2020-06-30

  Revised date: 2020-08-03

  Online published: 2020-08-11

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21772204, 21521002), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No. QYZDJ-SSW-SLH023).

摘要

受酶变构催化的启发,人工刺激响应不对称催化体系的研究近年来愈来愈引起人们的兴趣.通过将刺激响应性官能团引入手性催化剂的设计,利用光驱动、配位驱动、pH驱动以及氧化还原驱动等方式,动态调控催化反应的活性和对映选择性,成功实现了多类可切换不对称催化反应.主要介绍了近20年来人工刺激响应性不对称催化体系的发展与研究现状.通过选择代表性的研究成果,从刺激响应模块与催化位点的有机结合和动态调控出发,阐述其作为手性开关催化剂或者立体发散性合成催化剂的设计原理、作用机制以及他们在不对称催化反应中的应用.同时对这一新兴领域的优势和局限进行总结,并对其发展前景进行展望.

本文引用格式

唐雨平 , 何艳梅 , 范青华 . 用于可切换不对称催化的人工刺激响应催化体系[J]. 有机化学, 2020 , 40(11) : 3672 -3685 . DOI: 10.6023/cjoc202006076

Abstract

Inspired by enzyme allosteric catalysis, the study on artificial stimuli-responsive asymmetric catalytic systems has attracted more and more attentions in recent years. In order to precisely control the catalytic activity and stereoselectivity, stimuli-responsive functionalities have been introduced into the catalyst design. A variety of asymmetric reactions featuring on/off-switchable catalysis and/or stereodivergent catalysis have been successfully achieved by using light-, coordination-, pH-and redox-driven chiral switchable catalysts. By selecting representative examples, the catalyst design principles, allosteric mechanism and their applications in switchable asymmetric reactions sre mainly introduced. At the same time, advantages and limitations of this emerging field are summarized, and perspectives for its future development are given.

参考文献

[1] (a) Traut, T. Enzyme Activity:Allosteric Regulation, John Wiley & Sons Ltd, Chichester, 2014.
(b) Traut, T. Allosteric Regulatory Enzymes, Springer, New York, 2008.
[2] van Leeuwen, P. W. N. M. Homogeneous Catalysis:Understanding the Art, Springer, Dordrecht, 2004.
[3] van Leeuwen, P. W. N. M. Supramolecular Catalysis, Wiley-VCH, Weinheim, 2008.
[4] (a) Raynal, M.; Ballester, P.; Vidal-Ferran, A.; van Leeuwen, P. W. N. M. Chem. Soc. Rev. 2014, 43, 1660.
(b) Raynal, M.; Ballester, P.; Vidal-Ferran, A.; van Leeuwen, P. W. N. M. Chem. Soc. Rev. 2014, 43, 1734.
(c) Wang, Q.-Q. In Handbook of Macrocyclic Supramolecular Assembly, Eds.:Liu, Y.; Chen, Y.; Zhang, H.-Y., Springer, Singapore, 2019, pp. 1~124.
(d) Tang, Y.; He, Y.; Feng, Y.; Fan. Q. Prog. Chem. 2018, 30, 476(in Chinese). (唐雨平, 何艳梅, 冯宇, 范青华, 化学进展, 2018, 30, 476.)
[5] (a) Lüning, U. Angew. Chem., Int. Ed. 2012, 51, 8163.
(b) Blanco, V.; Leigh, D. A.; Marcos, V. Chem. Soc. Rev. 2015, 44, 5341.
(c) Vlatković, M.; Collins, B. S. L.; Feringa, B. L. Chem.-Eur. J. 2016, 22, 17080.
(d) van Dijk, L.; Tilby, M. J.; Szpera, R.; Smith, O. A.; Bunce, H. A. P.; Fletcher, S. P. Nat. Rev. Chem. 2018, 2, 0117.
[6] (a) Cao, W.; Feng, X.; Liu, X. Org. Biomol. Chem. 2019, 17, 6538.
(b) Ding, Z.-Y.; Chen, F.; Qin, J.; He, Y.-M.; Fan, Q.-H. Angew. Chem., Int. Ed. 2012, 51, 5706.
[7] Kasprzyk-Hordern, B. Chem. Soc. Rev. 2010, 39, 4466.
[8] Romanazzi, G.; Degennaro, L.; Mastrorilli, P.; Luisi, R. ACS Catal. 2017, 7, 4100.
[9] (a) Yamamoto, T.; Yamada, T.; Nagata, Y.; Suginome, M. J. Am. Chem. Soc. 2010, 132, 7899.
(b) Akai, Y.; Yamamoto, T.; Nagata, Y.; Ohmura, T.; Suginome, M. J. Am. Chem. Soc. 2012, 134, 11092.
(c) Nagata, Y.; Nishikawa, T.; Suginome, M. J. Am. Chem. Soc. 2014, 136, 15901.
(d) Akai, Y.; Konnert, L.; Yamamoto, T.; Suginome, M. Chem. Commun. 2015, 51, 7211.
(e) Ke, Y.-Z.; Nagata, Y.; Yamada, T.; Suginome, M. Angew. Chem., Int. Ed. 2015, 54, 9333.
[10] Stoll, R. S.; Hecht, S. Angew. Chem., Int. Ed. 2010, 49, 5054.
[11] Irie, M. Chem. Rev. 2000, 100, 1685.
[12] Sud, D.; Norsten, T. B.; Branda, N. R. Angew. Chem., Int. Ed. 2005, 44, 2019.
[13] (a) Koumura, N.; Zijlstra, R. W. J.; van Delden, R. A.; Harada, N.; Feringa, B. L. Nature 1999, 401, 152.
(b) Eelkema, R.; Pollard, M. M.; Vicario, J.; Katsonis, N.; Ramon, B. S.; Bastiaansen, C. W. M.; Broer, D. J.; Feringa, B. L. Nature 2006, 440, 163.
[14] Dorel, R.; Feringa, B. L. Chem. Commun. 2019, 55, 6477.
[15] Wang, J.; Feringa, B. L. Science 2011, 331, 1429.
[16] Vlatković, M.; Bernardi, L.; Otten, E.; Feringa, B. L. Chem. Commun. 2014, 50, 7773.
[17] Trost, B. M.; Van Vranken, D. L.; Bingel, C. J. Am. Chem. Soc. 1992, 114, 9327.
[18] Zhao, D.; Neubauer, T. M.; Feringa, B. L. Nat. Commun. 2015, 6, 6652.
[19] (a) Juwarker, H.; Lenhardt, J. M.; Pham, D. M.; Craig, S. L. Angew. Chem., Int. Ed. 2008, 47, 3740.
(b) Juwarker, H.; Jeong, K.-S. Chem. Soc. Rev. 2010, 39, 3664.
[20] Dorel, R.; Feringa, B. L. Angew. Chem., Int. Ed. 2020, 59, 785.
[21] (a) Koumura, N.; Geertsema, E. M.; van Gelder, M. B.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2002, 124, 5037.
(b) Vicario, J.; Walko, M.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2006, 128, 5127.
(c) Klok, M.; Walko, M.; Geertsema, E. M.; Ruangsupapichat, N.; Kistemaker, J. C. M.; Meetsma, A.; Feringa, B. L. Chem.-Eur. J. 2008, 14, 11183.
[22] Pizzolato, S. F.; Collins, B. S. L.; van Leeuwen, T.; Feringa, B. L. Chem.-Eur. J. 2017, 23, 6174.
[23] Pizzolato, S. F.; Štacko, P.; Kistemaker, J. C. M.; van Leeuwen, T.; Otten, E.; Feringa, B. L. J. Am. Chem. Soc. 2018, 140, 17278.
[24] Pizzolato, S. F.; Štacko, P.; Kistemaker, J. C. M.; van Leeuwen, T.; Feringa, B. L. Nat. Catal. 2020, 3, 488.
[25] (a) Chen, C.-T.; Chou, Y.-C. J. Am. Chem. Soc. 2000, 122, 7662.
(b) Chen, W.-C.; Lee, Y.-W.; Chen, C.-T. Org. Lett. 2010, 12, 1472.
(c) Chen, C.-T.; Chen, C.-H.; Ong, T.-G. J. Am. Chem. Soc. 2013, 135, 5294.
[26] Chen, C.-T.; Tsai, C.-C.; Tsou, P.-K.; Huang, G.-T.; Yu, C.-H. Chem. Sci. 2017, 8, 524.
[27] (a) Holliday, B. J.; Mirkin, C. A. Angew. Chem., Int. Ed. 2001, 40, 2022.
(b) Caulder, D. L.; Raymond, K. N. Acc. Chem. Res. 1999, 32, 975.
[28] Oliveri, C. G.; Ulmann, P. A.; Wiester, M. J.; Mirkin, C. A. Acc. Chem. Res. 2008, 41, 1618.
[29] Wiester, M. J.; Ulmann, P. A.; Mirkin, C. A. Angew. Chem., Int. Ed. 2011, 50, 114.
[30] Gianneschi, N. C.; Masar III, M. S.; Mirkin, C. A. Acc. Chem. Res. 2005, 38, 825.
[31] Yoon, H. J.; Kuwabara, J.; Kim, J.-H.; Mirkin, C. A. Science 2010, 330, 66.
[32] Gianneschi, N. C.; Bertin, P. A.; Nguyen, S. T.; Mirkin, C. A.; Zakharov, L. N.; Rheingold, A. L. J. Am. Chem. Soc. 2003, 125, 10508.
[33] Hansen, K. B.; Leighton, J. L.; Jacobsen, E. N. J. Am. Chem. Soc. 1996, 118, 10924.
[34] Gianneschi, N. C.; Cho, S.-H.; Nguyen, S. T.; Mirkin, C. A. Angew. Chem., Int. Ed. 2004, 43, 5503.
[35] Ouyang, G.-H.; He, Y.-M.; Li, Y.; Xiang, J.-F.; Fan, Q.-H. Angew. Chem., Int. Ed. 2015, 54, 4334.
[36] (a) Coskun, A.; Banaszak, M.; Astumian, R. D.; Stoddart, J. F.; Grzybowski, B. A. Chem. Soc. Rev. 2012, 41, 19.
(b) Zhang, L.; Marcos, V.; Leigh, D. A. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 9397.
[37] Leigh, D. A.; Marcos, V.; Wilson, M. R. ACS Catal. 2014, 4, 4490.
[38] Blanco, V.; Carlone, A.; Hänni, K. D.; Leigh, D. A.; Lewandowski, B. Angew. Chem., Int. Ed. 2012, 51, 5166.
[39] Blanco, V.; Leigh, D. A.; Marcos, V.; Morales-Serna, J. A.; Nussbaumer, A. L. J. Am. Chem. Soc. 2014, 136, 4905.
[40] (a) Alvarez-Pérez, M.; Goldup, S. M.; Leigh, D. A.; Slawin, A. M. Z. J. Am. Chem. Soc. 2008, 130, 1836.
(b) Cakmak, Y.; Erbas-Cakmak, S.; Leigh, D. A. J. Am. Chem. Soc. 2016, 138, 1749.
[41] Dommaschk, M.; Echavarren, J.; Leigh, D. A.; Marcos, V.; Singleton, T. A. Angew. Chem., Int. Ed. 2019, 58, 14955.
[42] De Bo, G.; Leigh, D. A.; McTernan, C. T.; Wang, S. Chem. Sci. 2017, 8, 7077.
[43] (a) Chaur, M. N.; Collado, D.; Lehn, J.-M. Chem.-Eur. J. 2011, 17, 248.
(b) Su, X.; Aprahamian, I. Chem. Soc. Rev. 2014, 43, 1963.
[44] (a) Allgeier, A. M.; Mirkin, C. A. Angew. Chem., Int. Ed. 1998, 37, 894.
(b) Praneeth, V. K. K.; Ringenberg, M. R.; Ward, T. R. Angew. Chem., Int. Ed. 2012, 51, 10228.
[45] Zahn, S.; Canary, J. W. Science 2000, 288, 1404.
[46] Mortezaei, S.; Catarineu, N. R.; Canary, J. W. J. Am. Chem. Soc. 2012, 134, 8054.
[47] Mortezaei, S.; Catarineu, N. R.; Duan, X.; Hu, C.; Canary, J. W. Chem. Sci. 2015, 6, 5904.
[48] Zhang, Q.; Cui, X.; Zhang, L.; Luo, S.; Wang, H.; Wu, Y. Angew. Chem., Int. Ed. 2015, 54, 5210.
[49] (a) Kassem, S.; Lee, A. T. L.; Leigh, D. A.; Marcos, V.; Palmer, L. I.; Pisano, S. Nature 2017, 549, 374.
(b) Kelly, T. R.; Snapper, M. L. Nature 2017, 549, 336.
[50] (a) Neel, A. J.; Hilton, M. J.; Sigman, M. S.; Toste, F. D. Nature 2017, 543, 637.
(b) Huang, G.; Chen, Z.; Wei, X.; Chen, Y.; Li, X.; Zhong, H.; Tan, M. Chin. J. Org. Chem. 2020, 40, 614(in Chinese). (黄国保, 陈志林, 韦贤生, 陈钰, 李秀英, 仲辉, 谭明雄, 有机化学, 2020, 40, 614.)
(c) Wang, Y.; Liu, H.; Zhu, X. Acta Chim. Sinica 2020, 78, 746(in Chinese). (王友付, 刘航海, 朱新远, 化学学报, 2020, 78, 746.)
文章导航

/