综述与进展

金鸡纳生物碱及其衍生物在不对称催化中的研究进展

  • 许双花 ,
  • 陈俊 ,
  • 陈加荣 ,
  • 肖文精
展开
  • 华中师范大学化学学院 武汉 430079

收稿日期: 2020-07-01

  修回日期: 2020-08-01

  网络出版日期: 2020-08-11

基金资助

国家自然科学基金(Nos.21820102003,91956201)资助项目.

Recent Progress in Applications of Cinchona Alkaloids and Their Derivatives in Asymmetric Catalysis

  • Xu Shuanghua ,
  • Chen Jun ,
  • Chen Jiarong ,
  • Xiao Wenjing
Expand
  • College of Chemistry, Central China Normal University, Wuhan 43007

Received date: 2020-07-01

  Revised date: 2020-08-01

  Online published: 2020-08-11

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21820102003, 91956201).

摘要

金鸡纳生物碱广泛存在于自然界中,具有很好的生物活性和药用价值,且具有优势的手性骨架,易于修饰,引起了化学家们广泛的研究兴趣.随着不对称合成化学的发展,化学家们将金鸡纳生物碱及其衍生物作为优势手性催化剂或配体应用于许多不对称催化反应中.尤其是近年来,有机化学家们利用金鸡纳生物碱衍生的手性配体发展了一系列金属催化不对称反应.本综述较为详细地概述了近年来金鸡纳生物碱及其衍生物作为催化剂或配体参与的不对称催化反应,探讨了相关反应机理,并对该研究领域未来发展前景进行了展望.

本文引用格式

许双花 , 陈俊 , 陈加荣 , 肖文精 . 金鸡纳生物碱及其衍生物在不对称催化中的研究进展[J]. 有机化学, 2020 , 40(11) : 3493 -3516 . DOI: 10.6023/cjoc202007004

Abstract

Cinchona alkaloids widely exist in nature, which have attracted extensive interest of researchers because of their readily availability, biological activity, unique structural properties, and easy modification. With the development of asymmetric synthetic chemistry, cinchona alkaloids and their derivatives have been used as a privileged class of chiral catalysts or ligands in many catalytic asymmetric reactions. In particular, a variety of cinchona alkaloid-derived chiral catalysts and ligands have been developed and applied by organic chemists in catalytic asymmetric synthesis in rencent years. The recent progress made in this field over the past few years is summarized. Moreover, the related reaction mechanisms and future development prospects are also discussed.

参考文献

[1] Yang, F.; Hanon, S.; Lam, P.; Schweitzer, P. Am. J. Med. 2009, 122, 317.
[2] Haas, L. F. J. Neurol., Neurosurg. Psychiatry 1994, 57, 1333.
[3] Rabe, P.; Ackerman, E.; Schneider, W. Chem. Ber. 1907, 40, 3655.
[4] Woodward, R. B.; Doering, W. E. J. Am. Chem. Soc. 1945, 67, 860.
[5] Carter, O. L.; McPhail, A. T.; Sim, G. A. J. Chem. Soc. A 1967, 365.
[6] Stork, G.; Niu, D.; Fujimoto, R. A.; Koft, E. R.; Balkovec, J. M.; Tata, J. R.; Dake, G. R. J. Am. Chem. Soc. 2001, 123, 3239.
[7] Yeboah, E. O.; Yeboah, S.; Singh, G. Tetrahedron 2011, 67, 1725.
[8] Boratyński, P. J.; Błajet, M. Z; Skarżewsk, J. Textbook of The Alkaloids:Chemistry and Biology, Elsevier, Poland, 2019, p. 29.
[9] List, B. Angew. Chem., Int. Ed. 2010, 49, 1730.
[10] MacMillan, D. W. C. Nature 2008, 455, 304.
[11] (a) Kacprzak, K.; Gawronski, J. Synthesis 2001, 961.
(b) Tian, S. K.; Chen, Y.; Hang, J.; Tang, L.; McDaid, P.; Deng, L. Acc. Chem. Res. 2004, 37, 621.
(c) Singh, G.; Yeboah, E. Rep. Org. Chem. 2016, 6, 47.
[12] Shi, L. M.; Dong, W. W.; Tao, H. Y.; Dong, X. Q.; Wang, C. J. Org. Lett. 2017, 19, 4532.
[13] Shao, Y. D.; He, X. Y.; Han, D. D.; Yang, X. R.; Yao, H. B.; Cheng, D. J. Asian J. Org. Chem. 2019, 8, 2023.
[14] Mukhopadhyay, S.; Pan, S. C. Eur. J. Org. Chem. 2019, 2639.
[15] Nakamura, S.; Hayama, D.; Miura, M.; Hatanaka, T.; Funahashi, Y. Org. Lett. 2018, 20, 856.
[16] Takata, S.; Endo, Y.; Ullah, M. S.; Itsuno, S. RSC Adv. 2016, 6, 72300.
[17] Endo, Y.; Takata, S.; Kumpuga, B. T.; Itsuno, S. ChemistrySelect 2017, 2, 10107.
[18] Reddy, R. R.; Gudup, S. S.; Ghora, P. Angew. Chem. Int. Ed. 2016, 55, 15115.
[19] Mondal, K.; Pan, S. C. J. Org. Chem. 2018, 83, 5301.
[20] Wu, Y. C.; Jhong, Y.; Lin, H. J.; Swain, S. P.; Tsaia, H. H. G.; Hou, D. R. Adv. Synth. Catal. 2019, 361, 4966.
[21] Jiang, H. Y.; Li, Q.; Qi, Q. J.; Yang, C. X.; Zhang, D. Chin. J. Org. Chem. 2018, 38, 825(in Chinese). (姜海洋, 李强, 齐庆杰, 杨晨曦, 张丹, 有机化学, 2018, 38, 825.)
[22] Zhu, W.-R.; Liu, K.; Huang, W.-H.; Huang, W.-J.; Chen, Q.; Weng, J.; Lin, N.; Lu, G. Org. Lett. 2020, 22, 5014.
[23] Zi, Y.; Lange, M.; Schultz, C.; Vilotijevic, I. Angew. Chem. Int. Ed. 2019, 58, 10727.
[24] Breman, A. C.; Heijden, G. V. D.; Maarseveen, J. H. V.; Ingemann, S.; Hiemstra, H. Chem. Eur. J. 2016, 22, 14247.
[25] Kumpuga, B. T.; Itsuno, S. Asian J. Org. Chem. 2019, 8, 251.
[26] Tichá, I. C.; Hybelbauerová, S.; Jindřich, J. J. Org. Chem. 2019, 15, 830.
[27] Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
[28] Yang, F.; Zhao, D. B.; Lan, J. B.; Xi, P. H.; Yang, L.; Xiang, S. H.; You, J. S. Angew. Chem. Int. Ed. 2008, 47, 5646.
[29] Wang, J.; Wang, W. T.; Li, W.; Hu, X. L.; Shen, K.; Tan, C,; Liu, X. H.; Feng, X. M. Chem. Eur. J. 2009, 15, 11642.
[30] Su, Z. S.; Li, W. Y.; Wang, J.; Hu, C. W.; Feng, X. M. Chem. Eur. J. 2013, 19, 1637.
[31] Wang, W. T.; Shen, K.; Hu, X. L.; Wang, J.; Liu, X. H.; Feng, X. M. Synlett 2009, 1655.
[32] Wang, J.; Li, W.; Liu, Y. L.; Chu, Y. Y.; Lin, L. L.; Liu, X. H.; Feng, X. M. Org. Lett. 2010, 12, 1280.
[33] Shi, J.; Wang, M.; He, L.; Zheng, K.; Liu, X. H.; Lin, L. L.; Feng, X. M. Chem. Commun. 2009, 31, 4711.
[34] Richter, C.; Ranganath, K. V. S.; Glorius, F. Adv. Synth. Catal. 2012, 354, 377.
[35] Hartikka, A.; Modin, S. A.; Arvidsson, P. G. Org. Biomol. Chem. 2003, 1, 2522.
[36] He, W.; Liu, P.; Zhang, B. L.; Sun, X. L.; Zhang, S. Y. Appl. Organomet. Chem. 2006, 20, 328.
[37] Hayashi, M.; Shiomi, N.; Funahashi, Y.; Nakamura, S. J. Am. Chem. Soc. 2012, 134, 19366.
[38] Hayashi, M.; Iwanaga, M.; Shiomi, N.; Nakane, D.; Masuda, H.; Nakamura, S. Angew. Chem. Int. Ed. 2014, 53, 8411.
[39] Yamaji, R.; Iwanaga, M.; Nakamura, S. Chem. Commun. 2016, 52, 7462.
[40] Shen, B.; Huang, H. Y.; Bian, G. L.; Zong, H.; Song, L. Chirality 2013, 25, 561.
[41] Liu, M.; Ma, S. J.; Tian, Z. Q.; Wu, H.; Wu, L. L.; Xu, X. F.; Huang, Y. D.; Wang, Y. M. Tetrahedron:Asymmetry 2013, 24, 736.
[42] Li, X. T.; Gu, Q. S.; Dong, X. Y.; Meng, X.; Liu, X. Y. Angew. Chem. Int. Ed. 2018, 57, 7668.
[43] Li, X. T.; Lv, L.; Wang, T.; Zhang, X. H.; Cheng, G. J.; Liu, X. Y. Chem 2020, 6, 1692.
[44] Tian, Q. Q.; Liu, Y. L.; Wang, X. Y.; Wang, X.; He, W. Eur. J. Org. Chem. 2019, 24, 3850.
[45] Zielińska, B. M.; Skarżewski, J. Tetrahedron:Asymmetry 2009, 20, 1992.
[46] Wei, Y.; Yao, L.; Zhang, B. L.; He, W.; Zhang, S. Y. Tetrahedron 2011, 67, 8552.
[47] Wang, Q. F.; He, W.; Liu, X. Y.; Chen, H.; Qin, X. Y.; Zhang, S. Y. Tetrahedron:Asymmetry 2008, 19, 2447.
[48] Sladojevich, F.; Trabocchi, A.; Guarna, A.; Dixon, D. J. J. Am. Chem. Soc. 2011, 133, 1710.
[49] Campa, R.; Dixon, D. J. Angew. Chem. Int. Ed. 2015, 54, 4895.
[50] Ortin, I.; Dixon, D. J. Angew. Chem. Int. Ed. 2014, 53, 3462.
[51] Campa, R.; Yamagata, A. D. G.; Ortin, I, Franchino, A.; Thompson, A. L.; Odell, B.; Dixon, D. J. Chem. Commun. 2016, 52, 10632.
[52] Manzano, R.; Rubén; Datta, S.; Paton, R.; Dixon, D. J. Angew. Chem. Int. Ed. 2017, 56, 5834.
[53] Zheng, S. C.; Wang, Q.; Zhu, J. P. Angew. Chem. Int. Ed. 2019, 58, 1494.
[54] Casarotto, V.; Li, Z. T.; Boucau, J.; Lin, Y. M. Tetrahedron. Lett. 2007, 48, 5561.
[55] Yao, L.; Wei, Y.; Wang, P. G.; He, W.; Zhang, S. Y. Tetrahedron 2012, 68, 9119.
[56] Dong, X. Y.; Zhang, Y. F.; Ma, C. L,; Gu, Q. S.; Wang, F. L.; Li, Z. L.; Jiang, S. P.; Liu, X. Y. Nat. Chem. 2019, 11, 1158.
[57] Xia, H. D.; Li, Z. L.; Gu, Q. S.; Dong, X. Y.; Fang, J. H.; Du, X. Y.; Wang, L. L.; Liu, X. Y. Angew. Chem. Int. Ed. 2020, 59, 16926.
[58] Zhang, Z. H.; Dong, X. Y.; Du, X. Y.; Gu, Q. S.; Li, Z. L.; Liu, X. Y. Nat. Commun. 2019, 10, 5689.
[59] Dong, X.-Y.; Cheng, J.-T.; Zhang, Y.-F.; Li, Z.-L.; Zhan, T.-Y.; Chen, J.-J.; Wang, F.-L.; Yang, N.-Y.; Ye, L.; Gu, Q.-S.; Liu, X.-Y. J. Am. Chem. Soc. 2020, 142, 9501.
文章导航

/