研究论文

过硫酸钾促进2-炔芳基腈与亚磺酸钠的自由基串联环化:构筑稠环环戊烯并[gh]菲啶

  • 陈志超 ,
  • 张红 ,
  • 周树锋 ,
  • 崔秀灵
展开
  • a 华侨大学化工学院 福建厦门 361021;
    b 华侨大学生物医学学院 分子药物教育部工程研究中心 福建省分子医学重点实验室 福建省高校精准医学与分子诊断重点实验室 厦门市海洋与基因药物重点实验室 福建厦门 361021

收稿日期: 2020-07-01

  修回日期: 2020-07-30

  网络出版日期: 2020-08-11

基金资助

国家自然科学基金(No.21572072)和高等学校学科创新引智计划(111计划,No.BC2018061)资助项目.

K2S2O8-Initiated Cascade Cyclization of 2-Alkynylnitriles with Sodium Sulfinates: Access to Fused Cyclopenta[gh]phenanthridines

  • Chen Zhichao ,
  • Zhang Hong ,
  • Zhou Shufeng ,
  • Cui Xiuling
Expand
  • a College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021;
    b Engineering Research Center of Molecular Medicine, Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021

Received date: 2020-07-01

  Revised date: 2020-07-30

  Online published: 2020-08-11

Supported by

Project supported by the National Natural Science Foundation of China (No. 21572072) and the Programme of Introducing Talents of Discipline to Universities (111 Project, No. BC 2018061).

摘要

报道了一种以2-炔芳基腈和亚磺酸钠为原料,过硫酸钾为氧化剂,通过自由基串联环化反应一步构筑环戊烯并[gh]菲啶的新方法.该反应具有反应条件温和、原子经济性高、底物适应性较强等优势.利用此方法简便地合成了多种潜在的具有生物活性的4-磺化环戊烯并菲啶.

本文引用格式

陈志超 , 张红 , 周树锋 , 崔秀灵 . 过硫酸钾促进2-炔芳基腈与亚磺酸钠的自由基串联环化:构筑稠环环戊烯并[gh]菲啶[J]. 有机化学, 2020 , 40(11) : 3866 -3872 . DOI: 10.6023/cjoc202007005

Abstract

A convenient K2S2O8-initiated radical cascade cyclization for the construction of 4-sulfonated cyclopenta[gh]-phenanthridines from 2-alkynylnitriles and sodium sulfinates has been explored under metal-free conditions. This protocol features mild conditions, good functional group tolerance and broad substrate scope. A variety of potentially bioactive 4-sulfonated cyclopenta[gh]phenanthridines were facilely synthesized via direct annulation.

参考文献

[1] (a) Günes, H. S.; Gözler, B. Fitoterapia 2001, 72, 875.
(b) Wang, X.-L.; Liu, B.-R.; Chen, C.-K.; Wang, J.-R.; Lee, S.-S. Fitoterapia 2011, 82, 793.
(c) Belkis, G.; Alan, J. F.; Maurice, S. J. Nat. Prod. 1990, 53, 675.
(d) Fajardo, V.; Araya, M.; Cuadra, P.; Oyarzun, A.; Gallardo, A.; Cueto, M.; Joseph-Nathan, P. J. Nat. Prod. 2009, 72, 1355.
(e) Honda, T.; Shigehisa, H. Org. Lett. 2006, 8, 657.
(f) Khunnawutmanotham, N.; Sahakitpichan, P.; Chimnoi, N.; Techasakul, S. Eur. J. Org. Chem. 2015, 28, 6324.
[2] Párraga, J.; Galán, A.; Sanz, M. J.; Cabedo, N.; Cortes, D. Eur. J. Med. Chem. 2015, 90, 101.
[3] (a) Leardini, R.; Nanni, D.; Tundo, A.; Zanardi, G. Tetrahedron Lett. 1998, 39, 2441.
(b) Chowdhury, S.; Zhao, B.; Snieckus, V. Polycyclic Aromat. Compd. 1995, 5, 27.
(c) Wu, Y.; Wong, S. M.; Mao, F.; Chan, T. L.; Kwong, F. Y. Org. Lett. 2012, 14, 5306.
[4] (a) Sciabola, S.; Carosati, E.; Baroni, M.; Mannhol, R. J. Med. Chem. 2005, 48, 3756.
(b) Tfelt-Hansen, P.; De Vries, P.; Saxena, P. R. Drugs 2000, 60, 1259.
(c) Artico, M.; Silvestri, R.; Massa, S.; Loi, A. G.; Corrias, S.; Piras, G.; Colla, P. L. J. Med. Chem. 1996, 39, 522.
(d) Harrak, Y.; Casula, G.; Basset, J.; Rosell, G.; Plescia, S.; Raffa, D.; Cusimano, M. G.; Pouplana, R.; Pujol, M. D. J. Med. Chem. 2010, 53, 6560.
(e) Emmett, E. J.; Hayter, B. R.; Willis, M. C. Angew. Chem., Int. Ed. 2014, 53, 10204.
[5] (a) Wu, Z.; Song, H.; Cui, X.; Pi, C.; Du, W.; Wu, Y. Org. Lett. 2013, 15, 1270.
(b) Mi, X.; Kong, Y.; Zhang, J.; Pi, C.; Cui, X. Chin. Chem. Lett. 2019, 30, 2295.
(c) Zhang, Z.; Yan, J.; Ma, D.; Sun, J. Chin. Chem. Lett. 2019, 30, 1509.
(d) Peng, S.; Song, Y.-X.; He, J.-Y.; Tang, S.-S.; Tan, J.-X.; Cao, Z.; He, W.-M. Chin. Chem. Lett. 2019, 30, 2287.
(e) Yu, H.; Pi, C.; Wang, Y.; Cui, X.; Wu, Y. Chin. J. Org. Chem. 2018, 38, 124(in Chinese). (余海洋, 皮超, 王勇, 崔秀灵, 吴养洁, 有机化学, 2018, 38, 124.)
(f) Shi, Z.-J.; Wang, L.-H.; Cui, X. Chin. J. Org. Chem. 2019, 39, 1596(in Chinese). (施兆江, 王连会, 崔秀灵, 有机化学, 2019, 39, 1596.)
(g) Xie, L.-Y.; Fang, T.-G.; Tan, J.-X.; Zhang, B.; Cao, Z.; Yang, L.-H.; He, W.-M. Green Chem. 2019, 21, 3858.
(h) Xie, L.-Y.; Peng, S.; Tan, J.-X.; Sun, R.-X.; Yu, X.; Dai, N.-N.; He, W.-M. ACS Sustainable Chem. Eng. 2018, 6, 16976.
(i) Xie, L.-Y.; Li, Y.-J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K.-J.; Cao, Z.; He, W.-M. Green Chem. 2017, 19, 5642.
(j) Cao, Z.; Zhu, Q.; Lin, Y.-W.; He, W.-M. Chin. Chem. Lett. 2019, 30, 2132.
[6] (a) Shaabani, A.; Mirzaei, P.; Naderi, S.; Lee, D. G. Tetrahedron 2004, 60, 11415.
(b) Kozak, J. A.; Dake, G. R. Angew. Chem., Int. Ed. 2008, 47, 4221.
(c) Pritzius, A. B.; Breit, B. Angew. Chem., Int. Ed. 2015, 54, 3121.
[7] (a) Olah, G. A.; Kobayashi, S.; Nishimura, J. J. Am. Chem. Soc. 1973, 95, 564.
(b) Répichet, S.; Le Roux, C.; Hernandez, P.; Dubac, J.; Desmurs, J.-R. J. Org. Chem. 1999, 64, 6479.
(c) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Parisi, L. M. Org. Lett. 2002, 4, 4719.
(d) Baskin, J. M.; Wang, Z. Org. Lett. 2002, 4, 4423.
[8] (a) Xu, Y.; Zhao, J.; Tang, X.; Wu, W.; Jiang, H. Adv. Synth. Catal. 2004, 356, 2029.
(b) Tang, X.; Huang, L.; Xu, Y.; Yang, J.; Wu, W.; Jiang, H. Angew. Chem., Int. Ed. 2014, 53, 4205.
(c) Xu, Y.; Tang, X.; Hu, W.; Wu, W.; Jiang, H. Green Chem. 2014, 16, 3720.
(d) Wu, W.-Q.; Yi, S.; Yu, Y.; Huang, W.; Jiang, H.-F. J. Org. Chem. 2017, 82, 1224.
[9] (a) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134.
(b) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167.
(c) Lu, L.-Q.; Chen, J.-R.; Xiao, W.-J. Acc. Chem. Res. 2012, 45, 1278.
(d) Volla, C. M. R.; Atodiresei, I.; Rueping, M. Chem. Rev. 2014, 114, 2390.
(e) Wang, Y.; Lu, H.; Xu, P.-F. Acc. Chem. Res. 2015, 48, 1832.
(f) Xuan, J.; Studer, A. Chem. Soc. Rev. 2017, 46, 4329.
(g) Zhang, Y.-L.; Sun, K.; Lv, Q.-Y.; Chen, X.-L.; Qu, L.-B.; Yu, B. Chin. Chem. Lett. 2019, 30, 1361.
(h) Ren, L.-J.; Ran, M.-G.; He, J.-X.; Qian, Y.; Yao, Q.-L. Chin. J. Org. Chem. 2019, 39, 1583(in Chinese). (任林静, 冉茂刚, 何佳芯, 钱燕, 姚秋丽, 有机化学, 2019, 39, 1583.)
[10] (a) Li, X.; Fang, X.; Zhuang, S.; Liu, P.; Sun, P. Org. Lett. 2017, 19, 3580.
(b) Yu, Y.; Cai, Z.; Yuan, W.; Liu, P.; Sun, P. J. Org. Chem. 2017, 82, 8148.
(c) Zhang, C.; Pi, J.; Chen, S.; Liu, P.; Sun, P. Org. Chem. Front. 2018, 5, 793.
(d) Xu, P.; Zhu, Y.-M.; Wang, F.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2019, 21, 683.
(e) Zheng, J.; Zhang, Y.; Wang, D.; Cui, S. Org. Lett. 2016, 18, 1768.
(f) Wu, L.-J.; Yang, Y.; Song, R.-J.; Yu, J.-X.; Li, J.-H.; He, D.-L. Chem. Commun. 2018, 54, 1367.
(g) Liu, X.; Wu, Z.; Zhang, Z.; Liu, P.; Sun, P. Org. Biomol. Chem. 2018, 16, 414.
(h) Shang, J.-Q.; Wang, S.-S.; Fu, H.; Li, Y.; Yang, T.; Li, Y.-M. Org. Chem. Front. 2018, 5, 1945.
[11] (a) Zhou, B.; Chen, W.; Yang, Y.; Yang, Y.; Deng, G.; Liang, Y. Org. Biomol. Chem. 2018, 16, 7959.
(b) Xie, L.-Y.; Peng, S.; Liu, F.; Chen, G.-R.; Xia, W.; Yu, X.; He, W.-M. Org. Chem. Front. 2018, 5, 2604.
(c) Wu, W.-Q.; Yi, S.-J.; Huang, W.; Luo, D.; Jiang, H.-F. Org. Lett. 2017, 19, 2825.
(d) Wei, W.; Wen, J.-W.; Yang, D.-S.; Du, J.; You, J.-M.; Wang, H. Green Chem. 2014, 16, 2988.
(e) Gao, M.; Li, Y.; Xie, L.; Chauvin, R.; Cui, X. Chem. Commun. 2016, 52, 2846.
[12] Zhou, N.-N.; Wu, M.-X.; Zhang, M.; Zhou, X.-Q.; Zhou, W. Org. Biomol. Chem. 2020, 18, 1733.
文章导航

/