碘叶立德的化学反应研究进展
收稿日期: 2020-06-12
修回日期: 2020-07-15
网络出版日期: 2020-08-19
基金资助
吉林省科技厅基金基金(20190103128JH); 中央高校基本科研业务费专项资金(2412019FZ006)
Advances in Reactions of Iodonium Ylides
Received date: 2020-06-12
Revised date: 2020-07-15
Online published: 2020-08-19
Supported by
the Department of Science and Technology of Jilin Province(20190103128JH); the Fundamental Research Funds for the Central Universities(2412019FZ006)
仝明慧 , 张欣宇 , 王也铭 , 王自坤 . 碘叶立德的化学反应研究进展[J]. 有机化学, 2021 , 41(1) : 126 -143 . DOI: 10.6023/cjoc202006021
Since the first reaction involved ylides was reported, they have been an important research direction of organic chemistry. Among them, iodonium ylides attracted considerable attentions in organic synthesis due to their unique reactivities as both iodine source and ylides. The preparation methods and structural properties of iodonium ylides are generally elaborated. Then, the reactivities of iodonium ylides are reviewed in detal, including the application of iodonium ylides as a carbene precursor in insertion reactions, cyclopropane reactions, and their development research in cycloaddition reactions, rearrangement reactions and halogenation reaction.
[1] | Wittig G.; Geissler G. Justus Liebigs Ann. Chem. 1953, 580, 44. |
[2] | Gudriniece E.; Neiland O.; Vanags G. Russ. J. Gen. Chem. 1957, 27, 2737. |
[3] | Yang R.-Y.; Dai L.-X. Chin. J. Org. Chem. 1994, 14, 113. |
[3] | ( 杨瑞阳, 戴立信, 有机化学, 1994, 14, 113.). |
[4] | Hadjiarapoglou L.; Spyroudis S.; Varvoglis A. J. Am. Chem. Soc. 1985, 107, 7178. |
[5] | Zhu S.-Z.; Chen Q.-Y. J. Chem. Soc., Chem. Commun. 1990, 1459. |
[6] | Hackenberg J.; Hanack M. J. Chem. Soc., Chem. Commun. 1991, 470. |
[7] | Goudreau S.R.; Marcoux D.; Charette A.B. J. Org. Chem. 2009, 74, 470. |
[8] | Yu J.; Liu S.S.; Cui J.; Hou X.S.; Zhang C. Org. Lett. 2012, 14, 832. |
[9] | Yoshimura A.; Nemykin V.N.; Zhdankin V.V. Chem.-Eur. J. 2011, 17, 10538. |
[10] | Zhu C.J.; Yoshimura A.; Ji L.; Wei Y.Y.; Nemykin V.N.; Zhdankin V.V. Org. Lett. 2012, 14, 3170. |
[11] | Geary G.C.; Hope E.G.; Singh K.; Stuart A.M. RSC Adv. 2015, 5, 16501. |
[12] | Doyle M.P.; Tamblyn W.H.; Bagheri V. J. Org. Chem. 1981, 46, 5094. |
[13] | Padwa A.; Hornbuckle S.F. Chem. Rev. 1991, 91, 263. |
[14] | Doyle M.P.; Forbes D.C.; Vasbinder M.M.; Peterson C.S. J. Am. Chem. Soc. 1998, 120, 7653. |
[15] | Ochiai M.; Kitagawa Y.; Yamamoto S. J. Am. Chem. Soc. 1997, 119, 11598. |
[16] | Arduengo A.J.; Kline M.; Calabrese J.C.; Davidson F. J. Am. Chem. Soc. 1991, 113, 9704. |
[17] | Yang R.-Y.; Dai L.-X.; Chen C.-G. J. Chem. Soc., Chem. Commun. 1992, 1487. |
[18] | Zhu S.-Z. Heteroat. Chem. 1994, 5, 9. |
[19] | Nishimura T.; Iwasaki H.; Takahashi M.; Takeda M. J. Radioanal. Nucl. Chem. 2003, 255, 499. |
[20] | Ivanov A.S.; Popov I.A.; Boldyrev A.I.; Zhdankin V.V. Angew. Chem., Int. Ed. 2014, 53, 9617. |
[21] | Müller P.; Fernandez D. Helv. Chim. Acta 1995, 78, 947. |
[22] | Moriarty R.M.; May E.J.; Prakash O. Tetrahedron Lett. 1997, 38, 4333. |
[23] | Lee Y.R.; Cho B.S. Bull. Korean Chem. Soc. 2002, 23, 779. |
[24] | Batsila C.; Gogonas E.P.; Kostakis G.; Hadjiarapoglou L.P. Org. Lett. 2003, 5, 1511. |
[25] | Adam W.; Gogonas E.P.; Hadjiarapoglou L.P. Tetrahedron 2003, 59, 7929. |
[26] | Gomes L.F.; Veiros L.F.; Maulide N.; Afonso C.A. Chem.-Eur. J. 2015, 21, 1449. |
[27] | Saito M.; Kobayashi Y.; Tsuzuki S.; Takemoto Y. Angew. Chem., Int. Ed. 2017, 56, 7653. |
[28] | Guo J.; Liu X.; He C.; Tan F.; Dong S.; Feng X. Chem. Commun. 2018, 54, 12254. |
[29] | Moriarty R.M.; Prakash O.; Vaid R.K.; Zhao L. J. Am. Chem. Soc. 1989, 111, 6443. |
[30] | Ochiai M.; Kitagawa Y. J. Org. Chem. 1999, 64, 3181. |
[31] | Tao J.; Estrada C.D.; Murphy G.K. Chem. Commun. 2017, 53, 9004. |
[32] | Zhang X.; Zeng R.; Feng X.; Dai Q.-S.; Liu Y.; Liu Y.-Q.; Wang Q.-W.; Li Q.-Z.; Li J.-L. Asian J. Org. Chem. 2018, 7, 2065. |
[33] | Chidley T.; Murphy G.K. Org. Biomol. Chem. 2018, 16, 8486. |
[34] | Chidley T.; Jameel I.; Rizwan S.; Peixoto P.A.; Pouységu L.; Quideau S.; Hopkins W.S.; Murphy G.K. Angew. Chem., Int. Ed. 2019, 58, 16959. |
[35] | Hadjiarapoglou L.P. Tetrahedron Lett. 1987, 28, 4449. |
[36] | Gogonas E.P.; Hadjiarapoglou L.P. Tetrahedron Lett. 2000, 41, 9299. |
[37] | Paizanos K.; Charalampou D.; Kourkoumelis N.; Kalpogiannaki D.; Hadjiarapoglou L.; Spanopoulou A.; Lazarou K.; Manos M.J.; Tasiopoulos A.J.; Kubicki M.; Hadjikakou S.K. Inorg. Chem. 2012, 51, 12248. |
[38] | Zhu C.; Yoshimura A.; Solntsev P.; Ji L.; Wei Y.; Nemykin V.N.; Zhdankin V.V. Chem. Commun. 2012, 48, 10108. |
[39] | Koser G.F.; Yu S.-M. J. Org. Chem. 1975, 40, 1166. |
[40] | Koser G.F.; Yu S.-M. J. Org. Chem. 1976, 41, 125. |
[41] | Huang X.C.; Liu Y.L.; Liang Y.; Pi S.F.; Wang F.; Li J.H. Org. Lett. 2008, 10, 1525. |
[42] | Pi S.-F.; Li W.-G.; Cai B.; Xiao H.-B.; Sun H.-Z. Synlett 2016, 27, 794. |
[43] | Laevens B.A.; Tao J.; Murphy G.K. J. Org. Chem. 2017, 82, 11903. |
[44] | Zhao Z.; Luo Y.; Liu S.; Zhang L.; Feng L.; Wang Y. Angew. Chem., Int. Ed. 2018, 57, 3792. |
[45] | Xiong Y.-J.; Shi S.-Q.; Hao W.-J.; Tu S.-J.; Jiang B. Org. Chem. Front. 2018, 5, 3483. |
[46] | Matveeva E.D.; Podrugina T.A.; Pavlova A.S.; Mironov A.V.; Zefirov N.S. Russ. Chem. Bull. 2008, 57, 2237. |
[47] | Matveeva E.D.; Podrugina T.A.; Pavlova A.S.; Mironov A.V.; Gleiter R.; Zefirov N.S. Eur. J. Org. Chem. 2009, 2323. |
[48] | Matveeva E.D.; Podrugina T.A.; Pavlova A.S.; Mironov A.V.; Borisenko A.A.; Gleiter R.; Zefirov N.S. J. Org. Chem. 2009, 74, 9428. |
[49] | Matveeva E.D.; Podrugina T.A.; Taranova M.A.; Vinogradov D.S.; Gleiter R.; Zefirov N.S. J. Org. Chem. 2013, 78, 11691. |
[50] | Matveeva E.D.; Podrugina T.A.; Taranova M.A.; Ivanova A.M.; Gleiter R.; Zefirov N.S. J. Org. Chem. 2012, 77, 5770. |
[51] | Nekipelova T.D.; Taranova M.A.; Matveeva E.D.; Kuz’min V.A.; Zefirov N.S. Kinet. Catal. 2015, 56, 403. |
[52] | Nekipelova T.D.; Podrugina T.A.; Vinogradov D.S.; Dem’yanov P.I.; Kuzmin V.A. Kinet. Catal. 2019, 60, 44. |
[53] | Nekipelova T.D.; Kasparov V.V.; Kovarskii A.L.; Vorobiev A.K.; Podrugina T.A.; Vinogradov D.S.; Kuzmin V.A.; Zefirov N.S. Dokl. Phys. Chem. 2017, 474, 109. |
[54] | Nekipelova T.D.; Podrugina T.A. Kinet. Catal. 2020, 61, 159. |
[55] | Levina I.I.; Klimovich O.N.; Vinogradov D.S.; Podrugina T.A.; Bormotov D.S.; Kononikhin A.S.; Dement'eva O.V.; Senchikhin I.N.; Nikolaev E.N.; Kuzmin V.A.; Nekipelova T.D. J. Phys. Org. Chem. 2018, 31, e3844. |
[56] | Kirmse W.; Kapps M. Chem. Ber. 1968, 101, 994. |
[57] | Xu B.; Tambar U.K. J. Am. Chem. Soc. 2016, 138, 12073. |
[58] | Xu B.; Gartman J.; Tambar U.K. Tetrahedron 2017, 73, 415. |
[59] | Xu B.; Tambar U.K. Angew. Chem., Int. Ed. 2017, 56, 9868. |
[60] | Gondo K.; Kitamura T. Molecules 2012, 17, 6625. |
[61] | Murphy G.; Tao J.; Tuck T. Synthesis 2015, 48, 772. |
[62] | Rotstein B.H.; Stephenson N.A.; Vasdev N.; Liang S.H. Nat. Commun. 2014, 5, 4365. |
[63] | Calderwood S.; Collier T.L.; Gouverneur V.; Liang S.H.; Vasdev N. J. Fluorine Chem. 2015, 178, 249. |
[64] | Stephenson N.A.; Holland J.P.; Kassenbrock A.; Yokell D.L.; Livni E.; Liang S.H.; Vasdev N. J. Nucl. Med. 2015, 56, 489. |
[65] | Jung Y.W.; Gu G.; Raffel D.M. J. Labelled Compd. Radiopharm. 2019, 62, 835. |
[66] | Petersen I.N.; Villadsen J.; Hansen H.D.; Madsen J.; Jensen A.A.; Gillings N.; Lehel S.; Herth M.M.; Knudsen G.M.; Kristensen J.L. Org. Biomol. Chem. 2017, 15, 4351. |
[67] | Jakobsson J.E.; Riss P.J. RSC Adv. 2018, 8, 21288. |
[68] | Yang Y.D.; Azuma A.; Tokunaga E.; Yamasaki M.; Shiro M.; Shibata N. J. Am. Chem. Soc. 2013, 135, 8782. |
[69] | Huang Z.; Yang Y.D.; Tokunaga E.; Shibata N. Org. Lett. 2015, 17, 1094. |
[70] | Huang Z.; Yang Y.-D.; Tokunaga E.; Shibata N. Asian J. Org. Chem. 2015, 4, 525. |
[71] | Arimori S.; Takada M.; Shibata N. Org. Lett. 2015, 17, 1063. |
[72] | Arimori S.; Takada M.; Shibata N. Dalton. Trans. 2015, 44, 19456. |
[73] | Arimori S.; Matsubara O.; Takada M.; Shiro M.; Shibata N. R. Soc. Open Sci. 2016, 3, 160102. |
[74] | Gondo S.; Matsubara O.; Chachignon H.; Sumii Y.; Cahard D.; Shibata N. Molecules 2019, 24, 221. |
[75] | Wang J.; Jia S.; Okuyama K.; Huang Z.; Tokunaga E.; Sumii Y.; Shibata N. J. Org. Chem. 2017, 82, 11939. |
[76] | Ochiai M.; Okada T.; Tada N.; Yoshimura A. Org. Lett. 2008, 10, 1425. |
[77] | Zhang L.; Kong X.; Liu S.; Zhao Z.; Yu Q.; Wang W.; Wang Y. Org. Lett. 2019, 21, 2923. |
[78] | Zhang L.; Zhao Z.; Wang W.; Liu S.; Wang Y. Org. Lett. 2019, 21, 9171. |
[79] | Gazis T.A.; Mohajeri Thaker B.A.J.; Willcox D.; Ould D.M.C.; Wenz J.; Rawson J.M.; Hill M.S.; Wirth T.; Melen R.L. Chem. Commun. 2020, 56, 3345. |
/
〈 |
|
〉 |