锌-锂双金属化合物的合成及其在异腈酸酯硼氢化中的催化应用
收稿日期: 2020-06-15
修回日期: 2020-07-26
网络出版日期: 2020-08-19
基金资助
国家自然科学基金(21772093); 国家自然科学基金(21372117); 江苏省自然科学基金(BK20181421); 江苏省研究生科研与实践创新计划(KYCX18_0983)
Synthesis of Zn-Li Bimetallic Compound and Its Catalytic Application in Hydroboration of Isocyanate
Received date: 2020-06-15
Revised date: 2020-07-26
Online published: 2020-08-19
Supported by
the National Natural Science Foundation of China(21772093); the National Natural Science Foundation of China(21372117); the Natural Science Foundation of Jiangsu Province(BK20181421); the Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX18_0983)
肖钤 , 臧沈荦 , 陈泽卫 , 姚薇薇 , 郑晶 , 马猛涛 . 锌-锂双金属化合物的合成及其在异腈酸酯硼氢化中的催化应用[J]. 有机化学, 2021 , 41(1) : 357 -363 . DOI: 10.6023/cjoc202006027
There are very few reports on the isocyanate hydroboration. So far, the Zn-catalyzed hydroboration of isocyanate has not been reported. The synthesis of a novel asymmetric β-diketiminate Zn-Li bimetallic compound and its application as a highly efficient catalyst in the hydroboration of various isocyanates with HBpin in high yields are reported. The preliminary mechanism of hydroboration reaction has been explored.
Key words: Zn-Li bimetallic compound; isocyanate; hydroboration; synthesis
[1] | Bravo-Zhivotovskii D.; Yuzefovich M.; Bendikov M.; Klink- hammer K.; Apeloig Y. Angew. Chem., Int. Ed. 1999, 38, 1100. |
[2] | Resa I.; Carmona E.; Gutierrez-Puebla E.; Monge A. Science 2004, 305, 1136. |
[3] | Del Río, D.; Galindo, A.; Resa, I.; Carmona, E. Angew. Chem., Int. Ed. 2005, 44, 1244. |
[4] | Li T.; Schulz S.; Roesky P.W. Chem. Soc. Rev. 2012, 41, 3759. |
[5] | Cao C.; Shi Y.; Xu H.; Zhao B. Coord. Chem. Rev. 2018, 365, 122. |
[6] | Chen M.; Jiang S.; Maron L.; Xu X. Dalton Trans. 2019 48, 1931. |
[7] | Freitag K.; Banh H.; Ganesamoorthy C.; Gemel C.; Seidel R.W.; Fischer R.A. Dalton Trans. 2013, 42, 10540. |
[8] | Bollermann T.; Gemel C.; Fischer R.A. Coord. Chem. Rev. 2012, 256, 537. |
[9] | Lühl A.; Pada N.H.; Blechert S.; Roesky P.W. Chem. Commun. 2011, 47, 8280. |
[10] | Lühl A.; Hartenstein L.; Blechert S.; Roesky P.W. Organometallics 2012, 31, 7109. |
[11] | Chong C.C.; Kinjo R. ACS Catal. 2015, 5, 3238. |
[12] | Yoshida H. ACS Catal. 2016, 6, 1799. |
[13] | Luo M.; Zang S.; Yao W.; Zheng J.; Ma M. Sci. Sin. Chim. 2020, 50, 639. |
[14] | Zhou N.; Yuan X.; Zhao Y.; Xie J.; Zhu C. Angew. Chem., Int. Ed. 2018, 57, 3990. |
[15] | Shimoi M.; Watanabe T.; Maeda K.; Curran D.P.; Taniguchi T. Angew. Chem., Int. Ed. 2018, 57, 9485. |
[16] | Ren S.; Zhang F.; Xu A.; Yang Y.; Zheng M.; Zhou X.; Fu Y.; Wang Y. Nat. Commun. 2019, 10, 1934. |
[17] | Huang Y.; Wang J.; Zheng W.; Zhang F.; Yu Y.; Zheng M.; Zhou X.; Wang Y.Chem. Commun. 2019, 55, 11904. |
[18] | Li T.; Zhang J.; Cui C. Chin. J. Chem. 2019, 37, 679. |
[19] | Xu X.; Kang Z.; Yan D.; Xue M. Chin. J. Chem. 2019, 37, 1142. |
[20] | Liu X.; Zhu Q.; Chen D.; Wang L.; Jin L.; Liu C. Angew. Chem., Int. Ed. 2020, 59, 2745. |
[21] | Tamang S.R.; Singh A.; Bedi D.; Bazkiaei A.R.; Warner A.A.; Glogau K.; Mcdonald C.; Unruh D.K.; Findlater M. Nat. Catal. 2020, 3, 154. |
[22] | Mcquilken A.C.; Dao Q.M.; Cardenas A.J.P.; Bertke J.A.; Grimme S.; Warren T.H. Angew. Chem. Int. Ed. 2016, 55, 14335. |
[23] | Mukherjee D.; Shirase S.; Spaniol T.P.; Mashima K.; Okuda J. Chem. Commun. 2016, 52, 13155. |
[24] | Yang Y.; Anker M.D.; Fang J.; Mahon M.F.; Maron L.; Weetman C.; Hill M.S. Chem. Sci. 2017, 8, 3529. |
[25] | Solé C.; Fernández E. Angew. Chem., Int. Ed. 2013, 52, 11351. |
[26] | Li J.; Luo M.; Sheng X.; Hua H.; Yao W.; Pullarkat S.A.; Xu L.; Ma M. Org. Chem. Front. 2018, 5, 3538. |
[27] | Prust J.; Most K.; Müller I.; Stasch A.; Roesky H.W.; Usón I. Eur. J. Inorg. Chem. 2001, 1613. |
[28] | Spielmann J.; Piesik D.; Wittkamp B.; Jansen G.; Harder S. Chem. Commun. 2009, 23, 3455. |
[29] | Lummis P.A.; Momeni M.R.; Lui M.W.; Mcdonald R.; Ferguson M.J.; Miskolzie M.; Brown A.; Rivard E. Angew. Chem., Int. Ed. 2014, 53, 9347. |
[30] | Gong S.; Ma H. Dalton Trans. 2008, 25, 3345. |
/
〈 |
|
〉 |