锰介导的Reformatsky反应: 高效合成多样化 β-羟基链烷酸酯
收稿日期: 2020-06-29
修回日期: 2020-07-30
网络出版日期: 2020-08-27
基金资助
国家自然科学基金(21962004); 国家自然科学基金(21562004); 江西省自然科学基金(20192BAB203004); 赣南医学院(QD201810); 赣南医学院(YJ202027)
Manganese-Mediated Reformatsky Reaction: Highly Divergent Synthesis ofβ-Hydroxyalkanoates
Received date: 2020-06-29
Revised date: 2020-07-30
Online published: 2020-08-27
Supported by
the the National Natural Science Foundation of China(21962004); the the National Natural Science Foundation of China(21562004); Jiangxi provincial department of science and technology(20192BAB203004); Gannan Medical University(QD201810); Gannan Medical University(YJ202027)
发展了一种由锰介导的简易高效的Reformatsky催化体系. 在便宜易得锰粉的介导下, 实现了镍催化剂高效催化碘代乙酸乙酯与醛酮的Reformatsky反应. 以乙腈为反应溶剂, 温和条件下可获得高收率的Reformatsky加成产物(up to 98%). 此外, 该催化方法学还可放大至克级规模.
关键词: 锰; 镍催化剂; Reformatsky; 醛酮; β-羟基链烷酸酯
夏艳萍 , 欧阳露 , 廖建华 , 魏一飞 , 罗人仕 . 锰介导的Reformatsky反应: 高效合成多样化 β-羟基链烷酸酯[J]. 有机化学, 2021 , 41(1) : 341 -347 . DOI: 10.6023/cjoc202006062
A practical, flexible, and efficient manganese-mediated catalytic system of Reformatsky reaction has been described. The cheap and readily available manganese powder acts as the reaction mediator, which conducts effectively for the preparation of useful β-hydroxyalkanoate compounds with the nickel catalyst in excellent yields (up to 98%) and mild condition. In addition, the catalytic methodology can be scaled up to the gram scale.
Key words: manganese; nickel catalyst; reformatsky; aldehydes and ketones; β-hydroxyalkanoates
[1] | (a) Paterson I.; Chen D.Y.-K.; Coster M.J.; Acen?a J.L.; Bach nJ.; Gibson K.R.L. E.; Oballa, R.M.; Trieselmann, T.; Wallace, D.J.; Hodgson, A.P.; Norcross, R.D. Angew. Chem., Int. Ed. 2001, 40, 4055. |
[1] | (b) Calter, M. A.; W. Liao, J. Am. Chem. Soc. 2002, 124, 13127. |
[1] | (c) Schetter, B.; R. Mahrwald, Angew. Chem., Int. Ed. . 2006, 45, 7506. |
[1] | (d) List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc. 2000, 122, 2395. |
[1] | (e) Cheng-Sánchez, I.; Carrillo, P.; Sánchez-Ruiz, A.; Martínez-Poveda, B.; A. Quesada, R.; M. Medina, A.; J. López- Romero, M.; Sarabia, F. J. Org. Chem. 2018, 83, 5365. |
[1] | (f) Kang, T.; Han, D. Jo, S. J. Org. Chem. 2017, 82, 9335. |
[1] | (g) Gomez-Palomino, A.; Romea, P.; Urpí, F. Synthesis . 2018, 50, 2721. |
[2] | (a) Mandavid H.; Rodrigues A.M.S.; Espindola L.S.; Eparvier V.; Stien D.J. Nat. Prod. 201 5, 78, 1735. |
[2] | (b) Nakamukai S.; Takada K.; Furihata K.; Ise Y.; Okada S.; Morii Y.; Yamawaki N.; Takatani T.; Arakawa O.; Gustafson K.R.; Stellatolide H Matsunaga, S.Tetrahedron Lett. 2018, 59, 2532. |
[2] | (c) Shin H.J.; Rashid M.A.; Cartner L.K.; Bokesch H.R.; Wilson J.A.; McMahon J.B.; Gustafson K.R. Tetrahedron Lett. 2015, 56, 4215. |
[2] | (d) Bae M.; Moon K.; Kim J.; Park H.J.; Lee S.K.; Shin J.; Oh D.-C. J. Nat. Prod. 2016, 79, 332. |
[3] | Reformatsky S. Ber. Dtsch. Chem. Ges. 1887, 20, 1210. |
[4] | (a) Choppin S.; Ferreiro-Medeiros L.; Barbarottoa M.; Colobert F. Chem. Soc. Rev. 2013, 42, 937. |
[4] | (b) Kim J.H.; Ko Y.O.; Bouffard J.; Lee S. Chem. Soc. Rev. 2015, 44, 2489. |
[4] | (c) Shen Z.-L.; Wang S.-Y.; Chok Y.-K.; Xu Y.-H.; Loh T.-P. Chem. Rev. 2013, 113, 271. |
[4] | (d) Cozzi P.G. Angew. Chem. Int. Ed. 2007, 46, 2568. |
[5] | (a) Yamakoshi S.; Kawanishi E. Tetrahedron Lett. 2014, 55, 1175. |
[5] | (b) Wu P.; Cai W.; Chen Q.-Y.; Xu S.; Yin R.; Li Y.; Zhang W.; Luesch H. Org. Lett. 2016, 18, 5400. |
[5] | (c) Yun J.-J.; Zhi M.-L.; Shi W.-X.; Chu X.-Q.; Shen Z.-L.; Loh T.-P. Adv. Synth. Catal. 2018, 360, 2632. |
[5] | (d) Liu X.-Y.; Li X.-R.; Zhang C.; Chu X.-Q.; Rao W.; Loh T.-P.; Shen Z.-L. Org. Lett. 2019, 21, 5873. |
[5] | (e) Sinast M.; Zuccolo M.; Wischnat J.; Sube T.; Hasnik F.; Baro A.; Dallavalle S.; Laschat S. J. Org. Chem. 2019, 84, 10050. |
[5] | (f) Cao Q.; Stark R.T.; Fallis I.A.; Browne D.L. ChemSusChem 2019, 12, 2554. |
[6] | Frstner A. Synthesis 1989, 571. |
[6] | (b) Marshall J.A. Chemtracts 2000, 13, 705. |
[6] | Podlech J.; Maier T.C. Synthesis 2003, 633. |
[6] | (d) Orsini F.; Sello G. Curr. Org. Synth. 2004, 1, 111. |
[6] | Nakamurai E. InOrganometallic in Synthesis, A Manual, Ed.: Schlosser, M., Wiley, New York, 2002, p. 579. |
[6] | (f) Ocampo R.; Dolbier Jr, W.R. Tetrahedron 2004, 60, 9325. |
[7] | (a) Peng Y.-Y.; Liu P.; Liu Z.-J.; Liu J.-T.; Mao H.-F.; Yao Y.-L. Tetrahedron 2018, 74, 3074. |
[7] | (b) Cao C.-R.; Jiang M.; Liu J.-T. Eur. J. Org. Chem. 2015, 1144. |
[7] | (c) Huck L.; Berton M.; de la Hoz A.; Díaz-Ortizb A.; Alcázar J. Green Chem. 2017, 19, 1420. |
[7] | (d) Fernández-Sánchez L.; Fernández-Salas J.A.; Maestro M.C.; García Ruano, J.L.J. Org. Chem. 2018, 83, 12903. |
[7] | (e) De Munck, L.; Sukowski, V.; Vila, C.; Muñozb, M.C.; Pedro, J.R. Org. Chem. Front. 2017, 4, 1624. |
[8] | (a) Fernandez-Ibanez M.A.; Macia B.; Minnaard A.J.; Feringa B.L. Angew. Chem., Int. Ed. 2008, 47, 1317. |
[8] | (b) Fornalczyk M.; Singh K.; Stuart A.M. Chem. Commun. 2012, 48, 3500. |
[8] | (c) Maestro A.; de Marigorta E.M.; Palacios F.; Vicario J. Org. Lett. 2019, 21, 9473. |
[8] | (d) DeβMunck L.; Vila C.; Muñoz M.C.; Pedro J.R. Chem. Eur. J. 2016, 22, 17590. |
[9] | (a) Chattopadhyay A.; Kr Dubey, A.J. Org. Chem. 2007, 72, 9357. |
[9] | (b) Moriwake T. J. Org. Chem. 1966, 31, 983. |
[10] | (a) Orsini F.; Lucci E.M. Tetrahedron Lett. 2005, 46, 1909. |
[10] | (b) Segade Y.; Montaos M.A.; Rodríguez J.; Jimenez C. Org. Lett. 2014, 16, 5820. |
[10] | (c) Nelson C.G.; Jr. Burke, T.R.J. Org. Chem. 2012, 77, 733. |
[10] | (d) Sinast M.; Zuccolo M.; Wischnat J.; Sube T.; Hasnik F.; Baro A.; Dallavalle S.; Laschat S. J. Org. Chem. 2019, 84, 10050. |
[11] | (a) Hu Y.; Zhou B.; Wang C. Acc. Chem. Res. 2018, 51, 816. |
[11] | (b) Hammarback L.A.; Clark I.P.; Sazanovich I.V.; Towrie M.; Robinson A.; Clarke F.; Meyer S.; Fairlamb I.J.S.; Lynam J.M. Nat. Catal. 2018, 1, 830. |
[12] | (a) Cozzi P.G.; Rivalta E. Angew. Chem. Int. Ed. 2005, 44, 3600. |
[13] | (a) Cozzi P.G. Angew. Chem. Int. Ed. 2007, 46, 2568. |
[13] | (b) Li R.; Xu H.; Zhao N.; Jin X.; Dang Y. J. Org. Chem. 2020, 85, 833. |
[14] | (a) Börjesson M.; Moragas T.; Gallego D.; Martin R. ACS Catal. 2016, 6, 6739. |
[14] | (b) Börjesson M.; Moragas T.; Gallego D.; Martin R. J. Am. Chem. Soc. 2016, 138, 7504. |
[15] | Zoua X.-L.; Dua G.-F.; Sun W.-F.; He L.; Ma X.-W.; Gu C.-Z.; Dai B. Tetrahedron 2013, 69, 607. |
[16] | Baudoux J.; Lefebvre P.; Legay R.; Lasne M.-C.; Rouden J. Green Chem. 2010, 12, 252. |
[17] | Wadhwa K.; Verkade J.G. J. Org. Chem. 2009, 74, 4368. |
/
〈 |
|
〉 |