α-氨基烷基自由基在可见光催化中的应用
收稿日期: 2020-05-21
修回日期: 2020-05-25
网络出版日期: 2020-09-09
基金资助
浙江省自然科学基金(LY18B020018); 浙江省自然科学基金(LY15B020004); 国家自然科学基金(21602197)
Application of α-Aminoalkyl Radical in Visible Light Catalysis
Received date: 2020-05-21
Revised date: 2020-05-25
Online published: 2020-09-09
Supported by
the Natural Science Foundation of Zhejiang Province(LY18B020018); the Natural Science Foundation of Zhejiang Province(LY15B020004); the National Natural Science Foundation of China(21602197)
赵赫 , 程冬萍 , 许孝良 . α-氨基烷基自由基在可见光催化中的应用[J]. 有机化学, 2021 , 41(2) : 642 -660 . DOI: 10.6023/cjoc202005055
Because of its low cost and environmental friendliness, visible light catalysis has been widely used in organic synthesis in recent years. Among them, α-aminoalkyl radical plays an important role because of its high activity and accessibility. The development and application of this active radical in visible light catalysis are mainly summarized and its outlook in the future is given.
[1] | Schmittel M.; Burghart A. Angew. Chem., Int. Ed. Engl. 1997, 36, 2550. |
[2] | Houmam.A. Chem. Rev. 2008, 108, 2180. |
[3] | Ruiz Espelt, L.; McPherson, I.S.; Wiensch, E.M.; Yoon, T.P. J. Am. Chem. Soc. 2015, 137, 2452. |
[4] | Dai X.; Cheng D.; Guan B.; Mao W.; Xu X.; Li X. J. Org. Chem. 2014, 79, 7212. |
[5] | Shi L.; Xia W.J. Chem. Soc. Rev. 2012, 41, 7687. |
[6] | Xuan J.; Xiao W.J. Angew. Chem., Int. Ed. 2012, 51, 6828. |
[7] | McNally A.; Prier C.K.; MacMillan D. W. C.Science 2011, 334, 1114. |
[8] | Miyake Y.; Nakajima K.; Nishibayashi Y. J. Am. Chem. Soc. 2012, 134, 3338. |
[9] | Chen J.R.; Hu X.Q.; Lu L.Q.; Xiao W.J. Acc. Chem. Res. 2016, 49, 1911. |
[10] | Yoon U.C.; Mariano P.S. Acc. Chem. Res. 1992, 25, 233. |
[11] | Cho D.W.; Yoon U.C.; Mariano P.S. Acc. Chem. Res. 2011, 44, 204. |
[12] | Nakajima K.; Nojima S.; Nishibayashi Y. Acc. Chem. Res. 2016, 49, 1946. |
[13] | McNally A.; Prier C.K.; MacMillan D. W. C.Science 2011, 334, 1114. |
[14] | Singh A.; Arora A.; Weaver J.D. Org. Lett. 2013, 15, 5390. |
[15] | Dong J.; Xia Q.; Lv X.; Yan C.; Song H.; Liu Y.; Wang Q. Org. Lett. 2018, 20, 5661. |
[16] | Zuo Z.; MacMillan D. W. C.J. Am. Chem. Soc. 2014, 136, 5257. |
[17] | Zuo Z.; Ahneman D.T.; Chu L.; Terrett J.A.; Doyle A.G.; Mac- Millan, D. W. C.Science 2014, 345, 437. |
[18] | Zuo Z.; Cong H.; Li W.; Choi J.; Fu G.C.; MacMillan D. W. C.J. Am. Chem. Soc. 2016, 138, 1832. |
[19] | Tellis J.C.; Primer D.N.; Molander G.A. Science 2014, 345, 433. |
[20] | El Khatib, M.; Serafim, R. A. M.; Molander, G.A. Angew. Chem., Int. Ed. 2016, 55, 254. |
[21] | Shaw.M.H.; Shurtleff, V. W.; Terrett, J. A.; MacMillan, D. W. C.Science 2016, 352, 1304. |
[22] | Remeu C.; Kelly C.B.; Patel N.R.; Molander G.A. ACS Catal. 2017, 7, 6065. |
[23] | Fan, L-L.; Jia, J.; Hou, H.; Lefebvre, Q.; Rueping, M.Chem.-Eur. J. 2016, 22, 16437. |
[24] | Cheng W.M.; Sang R.; Fu Y. ACS Catal. 2017, 7, 907. |
[25] | Ren L.; Cong H. Org. Lett. 2018, 20, 3225. |
[26] | Douglas J.J.; Cole K.P.; Stephenson C. R. J.J. Org. Chem. 2014, 79, 11631. |
[27] | Pratt C.J.; Aycock R.A.; King M.D.; Jui N.T. Synlett 2020, 31, 51. |
[28] | Zhou W.; Cao G.M.; Shen G.; Zhu X.; Gui Y.; Ye J.; Sun L.; Liao L.J.; Yu D.G. Angew. Chem., Int. Ed. 2017, 56, 15683. |
[29] | Le C.; Liang Y.F.; MacMillan D.W. C. Nature 2017, 547, 79. |
[30] | Li J.; Kong M.; Qiao B.; Lee R.; Zhao X.; Jiang Z. Nat. Commun. 2018, 9, 2445. |
[31] | Zeng G.; Li Y.; Qiao B.; Zhao X.; Jiang Z. Chem. Commun. 2019, 55, 11362. |
[32] | Liu Y.; Liu X.; Li J.; Zhao X.; Qiao B. Jiang Z. Chem. Sci. 2018, 9, 8094. |
[33] | Noble A.; MacMillan D. W. C.J. Am. Chem. Soc. 2014, 136, 11602. |
[34] | Noble A.; McCarver S.J.; MacMillan D. W. C.J. Am. Chem. Soc. 2015, 137, 624. |
[35] | Xuan J.; Zeng T.-T.; Feng Z.J.; Deng Q.H.; Chen J.R.; Lu L.Q.; Xiao W.J.; Alper H. Angew. Chem., Int. Ed. 2015, 54, 1625. |
[36] | Xie J.; Shi S.; Zhang T.; Mehrkens N.; Rudolph M.; Hashmi A. S. K.Angew. Chem., Int. Ed. 2015, 54, 6046. |
[37] | Kohls P.; Jadhav D.; Pandey G.; Reiser O. Org. Lett. 2012, 14, 672. |
[38] | Espelt L.R.; Wiensch E.M.; Yoon T.P. J. Org. Chem. 2013, 78, 4107. |
[39] | Miyake Y.; Ashida Y.; Nakajima K.; Nishibayashi Y. Chem. Commun. 2012, 48, 6966. |
[40] | Nakajima K.; Kitagawa M.; Ashida Y.; Miyake Y.; Nishibayashi Y. Chem. Commun. 2014, 50, 8900. |
[41] | Miyazawa K.; Koike T.; Akita M. Adv. Synth. Catal. 2014, 356, 2749. |
[42] | Murphy J.J.; Bastida D.; Paria S.; Fagnoni M.; Melchiorre P. Nature 2016, 532, 218. |
[43] | Lin S.X.; Sun G.J.; Kang Q. Chem. Commun. 2017, 53, 7665. |
[44] | Cai Y.F.; Yu R.T.; Fan, L-L.; Hou, H.; Lefebvre, Q.; Rueping, M.ACS Catal. 2018, 8, 9471. |
[45] | Xi Z.W.; Yang L.; Wang D.Y.; Pu C.D.; Shen Y.M.; Wu C.D.; Peng X.G. J. Org. Chem. 2018, 83, 11886. |
[46] | Ruiz Espelt, L.; McPherson, I.S.; Wiensch, E.M.; Yoon, T.P. J. Am. Chem. Soc. 2015, 137, 2452. |
[47] | McCarver S.J.; Qiao J.X.; Carpenter J.; Borzilleri R.M.; Poss M.A.; Eastgate M.D.; MacMillan D. W. C.Angew. Chem., Int. Ed. 2017, 56, 728. |
[48] | Ju X.; Li D.; Li W.; Yu W. Adv. Synth.Catal. 2012, 354, 3561. |
[49] | Guo J.T.; Yang D.C.; Guan Z.; He Y.H. J. Org. Chem. 2017, 82, 1888. |
[50] | Hsu C.W.; Sunde?n H. Org. Lett. 2018, 20, 2051. |
[51] | Aycock R, A.; Pratt, C, J.; Jui, N, T.ACS Catal. 2018, 9115. |
[52] | Miyake Y.; Nakajima K.; Nishibayashi Y. J. Am. Chem. Soc. 2012, 134, 3338. |
[53] | Mizoguchi H.; Oikawa H.; Oguri H. Nat. Chem. 2014, 6, 57. |
[54] | Zhu S.; Das A.; Bui L.; Zhou H.; Curran D.P.; Rueping M. J. Am. Chem. Soc. 2013, 135, 1823. |
[55] | Dai X.; Cheng D.; Guan B.; Mao W.; Xu X.; Li X. J. Org. Chem. 2014, 79, 7212. |
[56] | Dai X.; Mao R.; Guan B.; Xu X.; Li X. RSC Adv. 2015, 5, 55290. |
[57] | Hepburn H.B.; Melchiorre P. Chem. Commun. 2016, 52, 3520. |
[58] | Yin Y.; Dai Y.; Jia H.; Li J.; Bu L.; Qiao B.; Zhao X.; Jiang Z. J. Am. Chem. Soc. 2018, 140, 6083. |
[59] | Chu L.; Ohta C.; Zuo Z.; MacMillan D. W. C.J. Am. Chem. Soc. 2014, 136, 10886. |
[60] | Miyazawa K.; Koike T.; Akita M. Adv. Synth. Catal. 2014, 356, 2749. |
[61] | McManus J.B.; Onuska N.P.; Nicewicz D.A. J. Am. Chem. Soc. 2018, 140, 9056. |
[62] | Grübel M.; Jandl C.; Bach T. Synlett 2019, 30, 1825. |
[63] | Ashley M.A.; Yamauchi C.; Chu J.C.; Otsuka S.; Yorimitsu H.; Rovis T. Angew. Chem., Int. Ed. 2019, 58, 4002. |
[64] | Flode?n N.J.; Trowbridge A.; Willcox D.; Walton S.M.; Kim Y.; Gaunt M.J. J. Am. Chem. Soc. 2019, 141, 8426. |
[65] | Miyake Y.; Nakajima K.; Nishibayashi Y. Chem.-Eur. J. 2012, 18, 16473. |
[66] | Zhou H.; Lu P.; Gu X.; Li P. Org. Lett. 2013, 15, 5646. |
[67] | Itoh K.; Kato R.; Kinugawa D.; Kamiya H.; Kudo R.; Hasegawa M.; Fujii H.; Suga H. Org. Biomol. Chem. 2015, 13, 8919. |
[68] | Uraguchi D.; Kinoshita N.; Kizu T.; Ooi T. J. Am. Chem. Soc. 2015, 137, 13768. |
[69] | Fava E.; Millet A.; Nakajima M.; Loescher S.; Rueping M. Angew. Chem., Int. Ed. 2016, 55, 6776. |
[70] | Han B.; Li Y.; Yu Y.; Gong L. Nat. Commun. 2019, 10, 3804. |
[71] | Proctor R. S. J.; Davis H.J.; Phipps R.J. Science 2018, 360, 419. |
[72] | Liu X.; Liu Y.; Chai G.; Qiao B.; Zhao X.; Jiang Z. Org. Lett. 2018, 20, 6298. |
[73] | Ji J.; Zhu Z.; Xiao L.; Zhu X.; Le Z. Org. Chem. Front. 2019, 6, 3693. |
[74] | Zhang P.; Xiao T.; Xiong S.; Dong X.; Zhou L. Org. Lett. 2014, 16, 3264. |
[75] | Miyake Y.; Ashida Y.; Nakajima K.; Nishibayashi Y. Chem.-Eur. J. 2014, 20, 6120. |
[76] | Nakajima K.; Ashida Y.; Nojima S.; Nishibayashi Y. Chem. Lett. 2015, 44, 545. |
[77] | Constantin T.; Zanini M.; Regni A.; Sheikh N.S.; Julia F.; Leonori D. Science 2020, 367, 1021. |
[78] | Zhou X.S.; Yan D.M.; Chen J.R. Chem 2020, 6, 823. |
[79] | Li J.; Gu Z.; Zhao X.; Qiao B.; Jiang Z. Chem. Commun. 2019, 55, 12916. |
/
〈 |
|
〉 |