综述与进展

α-氨基烷基自由基在可见光催化中的应用

  • 赵赫 ,
  • 程冬萍 ,
  • 许孝良
展开
  • a 浙江工业大学化学工程学院 杭州 310014
    b 浙江工业大学药学院 杭州 310014
* Corresponding authors. E-mail: ;

收稿日期: 2020-05-21

  修回日期: 2020-05-25

  网络出版日期: 2020-09-09

基金资助

浙江省自然科学基金(LY18B020018); 浙江省自然科学基金(LY15B020004); 国家自然科学基金(21602197)

Application of α-Aminoalkyl Radical in Visible Light Catalysis

  • He Zhao ,
  • Dongping Cheng ,
  • Xiaoliang Xu
Expand
  • a College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014
    b College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014

Received date: 2020-05-21

  Revised date: 2020-05-25

  Online published: 2020-09-09

Supported by

the Natural Science Foundation of Zhejiang Province(LY18B020018); the Natural Science Foundation of Zhejiang Province(LY15B020004); the National Natural Science Foundation of China(21602197)

摘要

可见光催化具有成本低及环境友好等特点, 符合绿色化学的要求, 近年来在有机合成领域引起了广泛关注. 其中α-氨基烷基自由基因其具有活性高和易获得等优点, 在可见光催化中占据着重要的位置. 主要综述了该活性自由基在可见光催化中的发展和应用, 并对其未来研究进行了展望.

本文引用格式

赵赫 , 程冬萍 , 许孝良 . α-氨基烷基自由基在可见光催化中的应用[J]. 有机化学, 2021 , 41(2) : 642 -660 . DOI: 10.6023/cjoc202005055

Abstract

Because of its low cost and environmental friendliness, visible light catalysis has been widely used in organic synthesis in recent years. Among them, α-aminoalkyl radical plays an important role because of its high activity and accessibility. The development and application of this active radical in visible light catalysis are mainly summarized and its outlook in the future is given.

参考文献

[1]
Schmittel M.; Burghart A. Angew. Chem., Int. Ed. Engl. 1997, 36, 2550.
[2]
Houmam.A. Chem. Rev. 2008, 108, 2180.
[3]
Ruiz Espelt, L.; McPherson, I.S.; Wiensch, E.M.; Yoon, T.P. J. Am. Chem. Soc. 2015, 137, 2452.
[4]
Dai X.; Cheng D.; Guan B.; Mao W.; Xu X.; Li X. J. Org. Chem. 2014, 79, 7212.
[5]
Shi L.; Xia W.J. Chem. Soc. Rev. 2012, 41, 7687.
[6]
Xuan J.; Xiao W.J. Angew. Chem., Int. Ed. 2012, 51, 6828.
[7]
McNally A.; Prier C.K.; MacMillan D. W. C.Science 2011, 334, 1114.
[8]
Miyake Y.; Nakajima K.; Nishibayashi Y. J. Am. Chem. Soc. 2012, 134, 3338.
[9]
Chen J.R.; Hu X.Q.; Lu L.Q.; Xiao W.J. Acc. Chem. Res. 2016, 49, 1911.
[10]
Yoon U.C.; Mariano P.S. Acc. Chem. Res. 1992, 25, 233.
[11]
Cho D.W.; Yoon U.C.; Mariano P.S. Acc. Chem. Res. 2011, 44, 204.
[12]
Nakajima K.; Nojima S.; Nishibayashi Y. Acc. Chem. Res. 2016, 49, 1946.
[13]
McNally A.; Prier C.K.; MacMillan D. W. C.Science 2011, 334, 1114.
[14]
Singh A.; Arora A.; Weaver J.D. Org. Lett. 2013, 15, 5390.
[15]
Dong J.; Xia Q.; Lv X.; Yan C.; Song H.; Liu Y.; Wang Q. Org. Lett. 2018, 20, 5661.
[16]
Zuo Z.; MacMillan D. W. C.J. Am. Chem. Soc. 2014, 136, 5257.
[17]
Zuo Z.; Ahneman D.T.; Chu L.; Terrett J.A.; Doyle A.G.; Mac- Millan, D. W. C.Science 2014, 345, 437.
[18]
Zuo Z.; Cong H.; Li W.; Choi J.; Fu G.C.; MacMillan D. W. C.J. Am. Chem. Soc. 2016, 138, 1832.
[19]
Tellis J.C.; Primer D.N.; Molander G.A. Science 2014, 345, 433.
[20]
El Khatib, M.; Serafim, R. A. M.; Molander, G.A. Angew. Chem., Int. Ed. 2016, 55, 254.
[21]
Shaw.M.H.; Shurtleff, V. W.; Terrett, J. A.; MacMillan, D. W. C.Science 2016, 352, 1304.
[22]
Remeu C.; Kelly C.B.; Patel N.R.; Molander G.A. ACS Catal. 2017, 7, 6065.
[23]
Fan, L-L.; Jia, J.; Hou, H.; Lefebvre, Q.; Rueping, M.Chem.-Eur. J. 2016, 22, 16437.
[24]
Cheng W.M.; Sang R.; Fu Y. ACS Catal. 2017, 7, 907.
[25]
Ren L.; Cong H. Org. Lett. 2018, 20, 3225.
[26]
Douglas J.J.; Cole K.P.; Stephenson C. R. J.J. Org. Chem. 2014, 79, 11631.
[27]
Pratt C.J.; Aycock R.A.; King M.D.; Jui N.T. Synlett 2020, 31, 51.
[28]
Zhou W.; Cao G.M.; Shen G.; Zhu X.; Gui Y.; Ye J.; Sun L.; Liao L.J.; Yu D.G. Angew. Chem., Int. Ed. 2017, 56, 15683.
[29]
Le C.; Liang Y.F.; MacMillan D.W. C. Nature 2017, 547, 79.
[30]
Li J.; Kong M.; Qiao B.; Lee R.; Zhao X.; Jiang Z. Nat. Commun. 2018, 9, 2445.
[31]
Zeng G.; Li Y.; Qiao B.; Zhao X.; Jiang Z. Chem. Commun. 2019, 55, 11362.
[32]
Liu Y.; Liu X.; Li J.; Zhao X.; Qiao B. Jiang Z. Chem. Sci. 2018, 9, 8094.
[33]
Noble A.; MacMillan D. W. C.J. Am. Chem. Soc. 2014, 136, 11602.
[34]
Noble A.; McCarver S.J.; MacMillan D. W. C.J. Am. Chem. Soc. 2015, 137, 624.
[35]
Xuan J.; Zeng T.-T.; Feng Z.J.; Deng Q.H.; Chen J.R.; Lu L.Q.; Xiao W.J.; Alper H. Angew. Chem., Int. Ed. 2015, 54, 1625.
[36]
Xie J.; Shi S.; Zhang T.; Mehrkens N.; Rudolph M.; Hashmi A. S. K.Angew. Chem., Int. Ed. 2015, 54, 6046.
[37]
Kohls P.; Jadhav D.; Pandey G.; Reiser O. Org. Lett. 2012, 14, 672.
[38]
Espelt L.R.; Wiensch E.M.; Yoon T.P. J. Org. Chem. 2013, 78, 4107.
[39]
Miyake Y.; Ashida Y.; Nakajima K.; Nishibayashi Y. Chem. Commun. 2012, 48, 6966.
[40]
Nakajima K.; Kitagawa M.; Ashida Y.; Miyake Y.; Nishibayashi Y. Chem. Commun. 2014, 50, 8900.
[41]
Miyazawa K.; Koike T.; Akita M. Adv. Synth. Catal. 2014, 356, 2749.
[42]
Murphy J.J.; Bastida D.; Paria S.; Fagnoni M.; Melchiorre P. Nature 2016, 532, 218.
[43]
Lin S.X.; Sun G.J.; Kang Q. Chem. Commun. 2017, 53, 7665.
[44]
Cai Y.F.; Yu R.T.; Fan, L-L.; Hou, H.; Lefebvre, Q.; Rueping, M.ACS Catal. 2018, 8, 9471.
[45]
Xi Z.W.; Yang L.; Wang D.Y.; Pu C.D.; Shen Y.M.; Wu C.D.; Peng X.G. J. Org. Chem. 2018, 83, 11886.
[46]
Ruiz Espelt, L.; McPherson, I.S.; Wiensch, E.M.; Yoon, T.P. J. Am. Chem. Soc. 2015, 137, 2452.
[47]
McCarver S.J.; Qiao J.X.; Carpenter J.; Borzilleri R.M.; Poss M.A.; Eastgate M.D.; MacMillan D. W. C.Angew. Chem., Int. Ed. 2017, 56, 728.
[48]
Ju X.; Li D.; Li W.; Yu W. Adv. Synth.Catal. 2012, 354, 3561.
[49]
Guo J.T.; Yang D.C.; Guan Z.; He Y.H. J. Org. Chem. 2017, 82, 1888.
[50]
Hsu C.W.; Sunde?n H. Org. Lett. 2018, 20, 2051.
[51]
Aycock R, A.; Pratt, C, J.; Jui, N, T.ACS Catal. 2018, 9115.
[52]
Miyake Y.; Nakajima K.; Nishibayashi Y. J. Am. Chem. Soc. 2012, 134, 3338.
[53]
Mizoguchi H.; Oikawa H.; Oguri H. Nat. Chem. 2014, 6, 57.
[54]
Zhu S.; Das A.; Bui L.; Zhou H.; Curran D.P.; Rueping M. J. Am. Chem. Soc. 2013, 135, 1823.
[55]
Dai X.; Cheng D.; Guan B.; Mao W.; Xu X.; Li X. J. Org. Chem. 2014, 79, 7212.
[56]
Dai X.; Mao R.; Guan B.; Xu X.; Li X. RSC Adv. 2015, 5, 55290.
[57]
Hepburn H.B.; Melchiorre P. Chem. Commun. 2016, 52, 3520.
[58]
Yin Y.; Dai Y.; Jia H.; Li J.; Bu L.; Qiao B.; Zhao X.; Jiang Z. J. Am. Chem. Soc. 2018, 140, 6083.
[59]
Chu L.; Ohta C.; Zuo Z.; MacMillan D. W. C.J. Am. Chem. Soc. 2014, 136, 10886.
[60]
Miyazawa K.; Koike T.; Akita M. Adv. Synth. Catal. 2014, 356, 2749.
[61]
McManus J.B.; Onuska N.P.; Nicewicz D.A. J. Am. Chem. Soc. 2018, 140, 9056.
[62]
Grübel M.; Jandl C.; Bach T. Synlett 2019, 30, 1825.
[63]
Ashley M.A.; Yamauchi C.; Chu J.C.; Otsuka S.; Yorimitsu H.; Rovis T. Angew. Chem., Int. Ed. 2019, 58, 4002.
[64]
Flode?n N.J.; Trowbridge A.; Willcox D.; Walton S.M.; Kim Y.; Gaunt M.J. J. Am. Chem. Soc. 2019, 141, 8426.
[65]
Miyake Y.; Nakajima K.; Nishibayashi Y. Chem.-Eur. J. 2012, 18, 16473.
[66]
Zhou H.; Lu P.; Gu X.; Li P. Org. Lett. 2013, 15, 5646.
[67]
Itoh K.; Kato R.; Kinugawa D.; Kamiya H.; Kudo R.; Hasegawa M.; Fujii H.; Suga H. Org. Biomol. Chem. 2015, 13, 8919.
[68]
Uraguchi D.; Kinoshita N.; Kizu T.; Ooi T. J. Am. Chem. Soc. 2015, 137, 13768.
[69]
Fava E.; Millet A.; Nakajima M.; Loescher S.; Rueping M. Angew. Chem., Int. Ed. 2016, 55, 6776.
[70]
Han B.; Li Y.; Yu Y.; Gong L. Nat. Commun. 2019, 10, 3804.
[71]
Proctor R. S. J.; Davis H.J.; Phipps R.J. Science 2018, 360, 419.
[72]
Liu X.; Liu Y.; Chai G.; Qiao B.; Zhao X.; Jiang Z. Org. Lett. 2018, 20, 6298.
[73]
Ji J.; Zhu Z.; Xiao L.; Zhu X.; Le Z. Org. Chem. Front. 2019, 6, 3693.
[74]
Zhang P.; Xiao T.; Xiong S.; Dong X.; Zhou L. Org. Lett. 2014, 16, 3264.
[75]
Miyake Y.; Ashida Y.; Nakajima K.; Nishibayashi Y. Chem.-Eur. J. 2014, 20, 6120.
[76]
Nakajima K.; Ashida Y.; Nojima S.; Nishibayashi Y. Chem. Lett. 2015, 44, 545.
[77]
Constantin T.; Zanini M.; Regni A.; Sheikh N.S.; Julia F.; Leonori D. Science 2020, 367, 1021.
[78]
Zhou X.S.; Yan D.M.; Chen J.R. Chem 2020, 6, 823.
[79]
Li J.; Gu Z.; Zhao X.; Qiao B.; Jiang Z. Chem. Commun. 2019, 55, 12916.
文章导航

/