钯催化的1,4-环己二烯的立体选择性1,3-双芳基化反应
收稿日期: 2020-06-12
修回日期: 2020-08-28
网络出版日期: 2020-09-16
基金资助
国家自然科学基金(21702151); 国家自然科学基金(21871211); 中央大学基础研究基金(2042019kf0208)
Palladium-Catalyzed Stereoselective 1,3-Diarylation of 1,4-Cyclohexadiene
Received date: 2020-06-12
Revised date: 2020-08-28
Online published: 2020-09-16
Supported by
the National Natural Science Foundation of China(21702151); the National Natural Science Foundation of China(21871211); the Fundamental Research Funds for Central Universities(2042019kf0208)
庞海亮 , 吴冬 , 阴国印 . 钯催化的1,4-环己二烯的立体选择性1,3-双芳基化反应[J]. 有机化学, 2021 , 41(2) : 849 -856 . DOI: 10.6023/cjoc202006022
A palladium-catalyzed migratory diarylation of unconjugated cyclohexadiene is disclosed, which exihibits high 1,3-regioselectivity and exclusive cis-diastereoselectivity. The excellent selectivity suggests that the olefin does not dissocate from the palladium during chain-walking. This study provides a simple method for the synthesis of 1,3-diaryl-substituted cyclohexanes
Key words: palladium catalysis; metal migration; alkene; stereoselectivity
[1] | (a) Erlanson, D.A. ; Fesik, S.W. ; Hubbard, R.E. ; Jahnke, W. ; Jhoti, H. . Nat. Rev. Drug Discovery 2016, 15, 605. |
[1] | (b) Velvadapu, V. ; Farmer, B.T. ; Reitz, A.B. The Practice of Medicinal Chemistry, 4th ed, Elsevier, Netherlands, 2015, p. 161. |
[2] | (a) Melvin, L.S. ; Johnson, M.R. ; Harbert, C.A. ; Milne, G.M. ; Weissman, A. J. Med. Chem. 1984, 27, 67. |
[2] | (b) Wiley, J.L. ; Beletskaya, I.D. ; Ng, E.W. ; Dai, Z.M. ; Crocker, P.J. ; Mahadevan, A. ; Razdan, R.K. ; Martin, B.R. J. Pharmacol. Exp. Ther. 2002, 301, 679. |
[2] | (c) Huffman, J.W. ; Thompson, A.L. ; Wiley, J.L. ; Martin, B.R. Bioorg. Med. Chem. 2008, 16, 322. |
[2] | (d) Kare, P. ; Bhat, J. ; Sobhia, M.E. Mol. Diversity 2013, 17, 111. |
[3] | (a) Larock, R.C. ; Lu, Y.-d. ; Bain, A.C. J. Org. Chem. 1991, 56, 4589. |
[3] | (b) Larock, R.C. ; Berrios-Pe?a, N.G. ; Fried, C.A. ; Yum, E.K. ; Tu, C. ; Leong, W. J. Org. Chem. 1993, 58, 4509. |
[3] | (c) Larock, R.C. ; Wang, Y. ; Lu, Y.-d. ; Russell, C.E. J. Org. Chem. 1994, 59, 8107. |
[4] | Zhu, D.; Jiao, Z.; Chi, Y.R.; Goncalves, T.P.; Huang, K.W.; Zhou, J.S. Angew. Chem., Int. Ed. 2020, 59, 5341. |
[5] | Pang, H.; Wu, D.; Cong, H.; Yin, G. ACS Catal. 2019, 9, 8555. |
[6] | Li, J.; Ren, Q.; Cheng, X.; Karaghiosoff, K.; Knochel, P. J. Am. Chem. Soc. 2019, 141, 18127. |
[7] | Topchiy, M.A.; Asachenko, A.F.; Nechaev, M.S. Eur. J. Org. Chem. 2014, 2014, 3319. |
[8] | (a) Amatore, C. ; Jutand, A. Acc. Chem. Res. 2000, 33, 314. |
[8] | (b) Jeffery, T. J. Chem. Soc., Chem. Commun. 1984, 1287. |
[8] | (c) Carrow, B.P. ; Hartwig, J.F. J. Am. Chem. Soc. 2010, 132, 79. |
[8] | (d) Schroeter, F. ; Strassner, T. Inorg. Chem. 2018, 57, 5159. |
[9] | (a) Stokes, B.J. ; Opra, S.M. ; Sigman, M.S. J. Am. Chem. Soc. 2012, 134, 11408. |
[9] | (b) Mei, T.S. ; Patel, H.H. ; Sigman, M.S. Nature 2014, 508, 340. |
[9] | (c) Thornbury, R.T. ; Saini, V. ; Fernandes, T.A. ; Santiago, C.B. ; Talbot, E. P. A. ; Sigman, M.S. ; McKenna, J.M. ; Toste, F.D. Chem. Sci. 2017, 8, 2890. |
[9] | (d) Singh, S. ; Bruffaerts, J. ; Vasseur, A. ; Marek, I. Nat. Commun. 2017, 8, 14200. |
/
〈 |
|
〉 |