研究简报

钯催化的1,4-环己二烯的立体选择性1,3-双芳基化反应

  • 庞海亮 ,
  • 吴冬 ,
  • 阴国印
展开
  • 1 武汉大学高等研究院 武汉 430072
* Corresponding author. E-mail:

收稿日期: 2020-06-12

  修回日期: 2020-08-28

  网络出版日期: 2020-09-16

基金资助

国家自然科学基金(21702151); 国家自然科学基金(21871211); 中央大学基础研究基金(2042019kf0208)

Palladium-Catalyzed Stereoselective 1,3-Diarylation of 1,4-Cyclohexadiene

  • Hailiang Pang ,
  • Dong Wu ,
  • Guoyin Yin
Expand
  • 1 Institute for Advanced Studies, Wuhan University, Wuhan 430072

Received date: 2020-06-12

  Revised date: 2020-08-28

  Online published: 2020-09-16

Supported by

the National Natural Science Foundation of China(21702151); the National Natural Science Foundation of China(21871211); the Fundamental Research Funds for Central Universities(2042019kf0208)

摘要

基于金属迁移的策略, 发展了钯催化的1,4-环己二烯的1,3-双芳基化反应, 得到单一的非对映选择性的双芳基化的产物. 此反应具有优秀的区域选择性和单一的非对映选择性. 实验结果表明在钯迁移的过程中烯烃并没有从钯上解离下来. 这一研究为cis-1,3-双芳基取代的环己烷类化合物的合成提供了简便的方法.

本文引用格式

庞海亮 , 吴冬 , 阴国印 . 钯催化的1,4-环己二烯的立体选择性1,3-双芳基化反应[J]. 有机化学, 2021 , 41(2) : 849 -856 . DOI: 10.6023/cjoc202006022

Abstract

A palladium-catalyzed migratory diarylation of unconjugated cyclohexadiene is disclosed, which exihibits high 1,3-regioselectivity and exclusive cis-diastereoselectivity. The excellent selectivity suggests that the olefin does not dissocate from the palladium during chain-walking. This study provides a simple method for the synthesis of 1,3-diaryl-substituted cyclohexanes

参考文献

[1]
(a) Erlanson, D.A. ; Fesik, S.W. ; Hubbard, R.E. ; Jahnke, W. ; Jhoti, H. . Nat. Rev. Drug Discovery 2016, 15, 605.
[1]
(b) Velvadapu, V. ; Farmer, B.T. ; Reitz, A.B. The Practice of Medicinal Chemistry, 4th ed, Elsevier, Netherlands, 2015, p. 161.
[2]
(a) Melvin, L.S. ; Johnson, M.R. ; Harbert, C.A. ; Milne, G.M. ; Weissman, A. J. Med. Chem. 1984, 27, 67.
[2]
(b) Wiley, J.L. ; Beletskaya, I.D. ; Ng, E.W. ; Dai, Z.M. ; Crocker, P.J. ; Mahadevan, A. ; Razdan, R.K. ; Martin, B.R. J. Pharmacol. Exp. Ther. 2002, 301, 679.
[2]
(c) Huffman, J.W. ; Thompson, A.L. ; Wiley, J.L. ; Martin, B.R. Bioorg. Med. Chem. 2008, 16, 322.
[2]
(d) Kare, P. ; Bhat, J. ; Sobhia, M.E. Mol. Diversity 2013, 17, 111.
[3]
(a) Larock, R.C. ; Lu, Y.-d. ; Bain, A.C. J. Org. Chem. 1991, 56, 4589.
[3]
(b) Larock, R.C. ; Berrios-Pe?a, N.G. ; Fried, C.A. ; Yum, E.K. ; Tu, C. ; Leong, W. J. Org. Chem. 1993, 58, 4509.
[3]
(c) Larock, R.C. ; Wang, Y. ; Lu, Y.-d. ; Russell, C.E. J. Org. Chem. 1994, 59, 8107.
[4]
Zhu, D.; Jiao, Z.; Chi, Y.R.; Goncalves, T.P.; Huang, K.W.; Zhou, J.S. Angew. Chem., Int. Ed. 2020, 59, 5341.
[5]
Pang, H.; Wu, D.; Cong, H.; Yin, G. ACS Catal. 2019, 9, 8555.
[6]
Li, J.; Ren, Q.; Cheng, X.; Karaghiosoff, K.; Knochel, P. J. Am. Chem. Soc. 2019, 141, 18127.
[7]
Topchiy, M.A.; Asachenko, A.F.; Nechaev, M.S. Eur. J. Org. Chem. 2014, 2014, 3319.
[8]
(a) Amatore, C. ; Jutand, A. Acc. Chem. Res. 2000, 33, 314.
[8]
(b) Jeffery, T. J. Chem. Soc., Chem. Commun. 1984, 1287.
[8]
(c) Carrow, B.P. ; Hartwig, J.F. J. Am. Chem. Soc. 2010, 132, 79.
[8]
(d) Schroeter, F. ; Strassner, T. Inorg. Chem. 2018, 57, 5159.
[9]
(a) Stokes, B.J. ; Opra, S.M. ; Sigman, M.S. J. Am. Chem. Soc. 2012, 134, 11408.
[9]
(b) Mei, T.S. ; Patel, H.H. ; Sigman, M.S. Nature 2014, 508, 340.
[9]
(c) Thornbury, R.T. ; Saini, V. ; Fernandes, T.A. ; Santiago, C.B. ; Talbot, E. P. A. ; Sigman, M.S. ; McKenna, J.M. ; Toste, F.D. Chem. Sci. 2017, 8, 2890.
[9]
(d) Singh, S. ; Bruffaerts, J. ; Vasseur, A. ; Marek, I. Nat. Commun. 2017, 8, 14200.
文章导航

/