综述与进展

具有聚集诱导发光特性的含氟有机金属配合物的研究进展

  • 秦成远 ,
  • 苗金玲 ,
  • 聂永 ,
  • 刘威 ,
  • 高迎 ,
  • 李天瑞 ,
  • 蒋绪川
展开
  • a 济南大学智能材料与工程研究院 济南 250022
    b 济南大学化学化工学院 山东省氟化学化工材料重点实验室 济南 250022
* Corresponding authors. E-mail: ;

收稿日期: 2020-07-05

  修回日期: 2020-08-18

  网络出版日期: 2020-09-16

基金资助

山东省自然科学基金(ZR2017LB008); 山东省自然科学基金(ZR2020MB001); 济南大学科技计划(XKY1906); 山东莘纳智能新材料有限公司资助项目

Advances in Fluorinated Organometallic Complexes with Aggregation-Induced Emission Characteristics

  • Chengyuan Qin ,
  • Jinling Miao ,
  • Yong Nie ,
  • Wei Liu ,
  • Ying Gao ,
  • Tianrui Li ,
  • Xuchuan Jiang
Expand
  • a Institute for Smart Materials & Engineering, University of Jinan, Jinan 250022
    b Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022

Received date: 2020-07-05

  Revised date: 2020-08-18

  Online published: 2020-09-16

Supported by

the Natural Science Foundation of Shandong Province(ZR2017LB008); the Natural Science Foundation of Shandong Province(ZR2020MB001); the Science and Technology Program of University of Jinan(XKY1906); Shandong Shenna Smart Advanced Materials Co.,Ltd.

摘要

近年来, 具有聚集诱导发光(aggregation-induced emission, AIE)特性的化合物由于在聚集态或固态发光量子效率较高而受到很多关注. 含氟的功能化合物, 由于氟原子的存在, 往往具有独特的结构和物理、化学及生物学性质. 根据中心金属和配体的种类, 汇总了具有AIE性质的且含有氟代配体的有机金属配合物的研究进展. 这些含氟有机金属配合物主要是铱、铂、金配合物, 在发光器件、化学传感、细胞成像、数据存储等方面具有潜在应用. 还简要讨论了相关研究的发展前景.

本文引用格式

秦成远 , 苗金玲 , 聂永 , 刘威 , 高迎 , 李天瑞 , 蒋绪川 . 具有聚集诱导发光特性的含氟有机金属配合物的研究进展[J]. 有机化学, 2021 , 41(2) : 504 -520 . DOI: 10.6023/cjoc202007015

Abstract

In recent years, the compounds with aggregation-induced emission (AIE) characteristics have received increasing attention because they exhibit much higher luminescence quantum yields in aggregation or solid states than in solution. Due to the presence of the fluorine atom(s), fluorinated functional compounds generally have unique structures, and physical, chemical and biological properties. Herein, the luminescent organometallic complexes with AIE characteristics having fluorine-containing ligands are summarized, according to the types of central metal atoms and ligands. Such organometallic complexes are mainly those of iridium, platinum and gold, with potential applications in light-emitting devices, chemical sensing, cell imaging and data storage, etc. The prospects of the relevant studies are also discussed.

参考文献

[1]
Joshi K.; Singh R.; Mishra N.; Kumar V.; Vinayak V. ChemBioChem 2018, 19, 1630.
[2]
Ma D.; Ng H.; Wong S.; Vellaisamy K.; Wu K.; Leung C. Dalton Trans. 2018, 47, 15278.
[3]
Simpson P.; Falasca M.; Massi M. Chem. Commun. 2018, 54, 12429.
[4]
Chen S.; Pang C.; Chen X.; Yan Z.; Huang S.; Li X.; Zhong Y.; Wang Z. Chin. J. Org. Chem. 2019, 39, 1846. (in Chinese)
[4]
陈思鸿, 庞楚明, 陈孝云, 严智浩, 黄诗敏, 李香弟, 钟雅婷, 汪朝阳, 有机化学, 2019, 39, 1846.).
[5]
Ren B.; Yi J.; Zhong D.; Zhao Y.; Guo R.; Sheng Y.; Sun Y.; Xie L.; Huang W. Acta Chim. Sinica 2020, 78, 56. (in Chinese)
[5]
任保轶, 依建成, 钟道昆, 赵玉志, 郭闰达, 盛永刚, 孙亚光, 解令海, 黄维, 化学学报, 2020, 78, 56.).
[6]
Chen S.; Dao J.; Zhou K.; Luo Y.; Su S.; Pu X.; Huang Y.; Lu Z. Acta Chim. Sinica 2017, 75, 367. (in Chinese)
[6]
陈仕琦, 代军, 周凯峰, 罗艳菊, 苏仕健, 蒲雪梅, 黄艳, 卢志云, 化学学报, 2017, 75, 367.).
[7]
Luo J.; Xie Z.; Lam J. W. Y.; Cheng L.; Tang B.Z.; Chen H.; Qiu C.; Kwok H.S.; Zhan X.; Liu Y.; Zhu D. Chem. Commun. 2001, 1740.
[8]
Chi Z.; Zhang X.; Xu B.; Zhou X.; Ma C.; Zhang Y.; Liu S.; Xu J. Chem. Soc. Rev. 2012, 41, 3878.
[9]
Chen Z.; Liang J.; Han X.; Yin J.; Yu G.; Liu S. Dyes Pigm. 2015, 112, 59.
[10]
Hariharan P.; Venkataramanan N.; Moon D.; Anthony S. J. Phys. Chem. C 2015, 119, 9460.
[11]
Chen M.; Sun J.; Qin A.; Tang B.Z. Chin. Sci. Bull. 2016, 61, 304. (in Chinese)
[11]
陈明, 孙景志, 秦安军, 唐本忠, 科学通报, 2016, 61, 304.).
[12]
Zhang L.; Li M.; Gao Q.; Chen C. Chin. J. Org. Chem. 2020, 40, 516. (in Chinese)
[12]
张亮, 李猛, 高庆宇, 陈传峰, 有机化学, 2020, 40, 516.).
[13]
Mei J.; Hong Y.; Lam J.W.; Qin A.; Tang Y.; Tang B.Z. Adv. Mater. 2014, 26, 5429.
[14]
Mei J.; Leung N.L.; Kwok R.T.; Lam J.W.; Tang B.Z. Chem. Rev. 2015, 115, 11718.
[15]
Hong Y.; Lam J.W.; Tang B.Z. Chem. Commun. 2009, 4332.
[16]
Luo J.; Song K.; Gu F.L.; Miao Q. Chem. Sci. 2011, 2, 2029.
[17]
Leung N.L.; Xie N.; Yuan W.; Liu Y.; Wu Q.; Peng Q.; Miao Q.; Lam J.W.; Tang B.Z. Chem.-Eur. J. 2014, 20, 15349.
[18]
Yao L.; Zhang S.; Wang R.; Li W.; Shen F.; Yang B.; Ma Y. Angew. Chem., Int. Ed. 2014, 53, 2119.
[19]
Liu J.; Meng Q.; Zhang X.; Lu X.; He P.; Jiang L.; Dong H.; Hu W. Chem. Commun. 2013, 49, 1199.
[20]
Ravotto L.; Ceroni P. Coord. Chem. Rev. 2017, 346, 62.
[21]
Alam P.; Climent C.; Alemany P.; Laskar I. J. Photochem. Photobiol., C 2019, 41, 100317.
[22]
Jiang B.; Zhang C.; Shi X.; Yang H. Chin. J. Polym. Sci. 2019, 37, 372.
[23]
Sathish V.; Ramdass A.; Thanasekaran P.; Lu K.; Rajagopal S. J. Photochem. Photobiol., C 2015, 23, 25.
[24]
Zhao Q.; Li L.; Li F.; Yu M.; Liu Z.; Yi T.; Huang C. Chem. Commun. 2008, 685.
[25]
Yang X.; Yue L.; Yu Y.; Liu B.; Dang J.; Sun Y.; Zhou G.; Wu Z.; Wong W. Adv. Optical Mater. 2020, 8, 2000079.
[26]
Chopra D.; Row T. CrystEngComm 2011, 13, 2175.
[27]
Zhang Q.; Kelly M.A.; Bauer N.; You W. Acc. Chem. Res. 2017, 50, 2401.
[28]
Babudri F.; Farinola G.M.; Naso F.; Ragni R. Chem. Commun. 2007, 1003.
[29]
MilianMedina B.; Gierschner J. J. Phys. Chem. Lett. 2017, 8, 91.
[30]
Liu M.; Wu Q.; Shi H.; An Z.; Huang W. Acta Chim. Sinica 2018, 76, 246. (in Chinese)
[30]
刘明丽, 吴琪, 史慧芳, 安众福, 黄维, 化学学报, 2018, 76, 246.).
[31]
Xu P.; Qiu Q.; Ye X.; Wei M.; Xi W.; Feng H.; Qian Z. Chem. Commun. 2019, 55, 14938.
[32]
Qin C.; Liu W.; Nie Y.; Gao Y.; Miao J.; Li T.; Jiang X. Chin. J. Org. Chem. 2020, 40, 2232. (in Chinese)
[32]
秦成远, 刘威, 聂永, 高迎, 苗金玲, 李天瑞, 蒋绪川, 有机化学, 2020, 40, 2232.).
[33]
Lei Z.; Pei X.; Guan Z.; Wang Q. Angew. Chem., Int. Ed. 2017, 56, 7117.
[34]
Wang N.; Zhang J.; Xu X.; Feng S. Dalton Trans. 2020, 49, 1883.
[35]
Mo L.; Jia J.; Sun L.; Wang Q. Chem. Commun. 2012, 48, 8691.
[36]
Guo L.X.; Xing Y.; Wang M.; Sun Y.; Zhang X.; Lin B.P.; Yang H. J. Mater. Chem. C 2019, 7, 4828.
[37]
Yan X.; Wang M.; Cook T.; Zhang M.; Saha M.; Zhou Z.; Li X.; Huang F.; Stang P. J. Am. Chem. Soc. 2016, 138, 4580.
[38]
Krummacher B.; Choong V.; Mathai M.; Choulis S.; So F.; Jermann F.; Fiedler T.; Zachau M. Appl. Phys. Lett. 2006, 88, 113506.
[39]
He L.; Tan C.; Cao Q.; Mao Z. Prog. Chem. 2018, 30, 1548. (in Chinese)
[39]
何良, 谭彩萍, 曹乾, 毛宗万, 化学进展, 2018, 30, 1548.).
[40]
Zhang X.; Xu Y.; Shi H. Prog. Chem. 2006, 18, 870. (in Chinese)
[40]
张秀菊, 许运华, 史华红, 化学进展, 2006, 18, 870.).
[41]
Liao Z.; Zhu T.; Mi B.; Gao Z.; Fan Q.; Huang W. Prog. Chem. 2011, 23, 1627. (in Chinese)
[41]
廖章金, 朱彤珺, 密保秀, 高志强, 范曲立, 黄维, 化学进展, 2011, 23, 1627.).
[42]
You Y.; Huh H.; Kim K.; Lee S.; Kim D.; Park S. Chem. Commun. 2008, 3998.
[43]
Shin C.H.; Huh J.O.; Baek S.J.; Kim S.K.; Lee M.H.; Do Y. Eur. J. Inorg. Chem. 2010, 3642.
[44]
Alam P.; Das P.; Climent C.; Karanam M.; Casanova D.; Choudhury A.R.; Alemany P.; Jana N.R.; Laskar I.R. J. Mater. Chem. C 2014, 2, 5615.
[45]
Alam P.; Kaur G.; Climent C.; Pasha S.; Casanova D.; Alemany P.; Choudhury A.R.; Laskar I.R. Dalton Trans. 2014, 43, 16431.
[46]
Song Z.; Liu R.; Li Y.; Shi H.; Hu J.; Cai X.; Zhu H. J. Mater. Chem. C 2016, 4, 2553.
[47]
Liu R.; Song Z.; Li Y.; Li Y.; Yao W.; Yao W.; Sun H.; Zhu H. Sens. Actuators, B 2018, 259, 840.
[48]
Li Y.; Ma B.; Long Y.; Song Z.; Su J.; Wang Y.; Liu R.; Song G.; Zhu H. J. Mater. Chem. C 2020, 8, 2467.
[49]
Bejoymohandas K.S.; George T.M.; Bhattacharya S.; Natarajan S.; Reddy M. L. P.J. Mater. Chem. C 2014, 2, 515.
[50]
Liu J.; Jiu C.; Yuan B.; Liu X.; Chen Y.; Ji L.; Chao H. Chem. Commun. 2017, 53, 2052.
[51]
Qiu K.; Ouyang M.; Liu Y.; Huang H.; Liu C.; Chen Y.; Jia L.; Chao H. J. Mater. Chem. B 2017, 5, 5488.
[52]
Darmawan N.; Sambri L.; Daniliuc C.G.; De Cola, L.Dalton Trans. 2019, 48, 3664.
[53]
Xie J.; Li D.; Duan Y.; Geng Y.; Yang T.; Li G.; Zhu D.; Su Z. Dyes Pigm. 2020, 172, 107855.
[54]
Shan G.; Li H.; Qin J.; Zhu D.; Liao Y.; Su Z. Dalton Trans. 2012, 41, 9590.
[55]
Shan G.; Li H.; Sun H.; Zhu D.; Cao H.; Su Z. J. Mater. Chem. C 2013, 1, 1440.
[56]
Wu Y.; Sun H.; Cao H.; Li H.; Shan G.; Duan Y.; Geng Y.; S Z.; Liao Y. Chem. Commun. 2014, 50, 10986.
[57]
Li G.; Ren X.; Shan G.; Che W.; Zhu D.; Yan L.; Su Z.; Bryce M.R. Chem. Commun. 2015, 51, 13036.
[58]
Zhao K.; Mao H.; Wen L.; Shan G.; Fu Q.; Sun H.; Su Z. J. Mater. Chem. C 2018, 6, 11686.
[59]
Wang Y.; Yang T.; Liu X.; Li G.; Che W.; Zhu D.; Su Z. J. Mater. Chem. C 2018, 6, 12217.
[60]
Che W.; Li G.; Liu X.; Shao K.; Zhu D.; Su Z.; Bryce M. Chem. Commun. 2018, 54, 1730.
[61]
Congrave D.G.; Batsanov A.S.; Bryce M.R. Dalton Trans. 2018, 47, 16524.
[62]
Song Z.; Liu R.; Li X.; Zhu H.; Lu Y.; Zhu H. J. Mater. Chem. C 2018, 6, 10910.
[63]
Kim H.; Jiang H.; Choi W.; Park T.; Lee J.; Bejoymohandas K. J. Mater. Chem. C 2020, 8, 4789.
[64]
Berenguer J.R.; Lalinde E.; Moreno M.T. Coord. Chem. Rev. 2018, 366, 69.
[65]
Liu S.; Sun H.; Ma Y.; Ye S.; Liu X.; Zhou X.; Mou X.; Wang L.; Zhao Q.; Huang W. J. Mater. Chem. 2012, 22, 22167.
[66]
Martinez-Junquera M.; Lara R.; Lalinde E.; Moreno M. J. Mater. Chem. C 2020, 8, 7221.
[67]
Ionescu A.; Godbert N.; Aiello I.; Ricciardi L.; La Deda M.; Crispini A.; Sicilia E.; Ghedini M. Dalton Trans. 2018, 47, 11645.
[68]
Berenguer J.R.; Lalinde E.; Moreno M.T.; Sanchez S.; Torroba J. Inorg. Chem. 2012, 51, 11665.
[69]
Shiotsuka M.; Ono R.; Kurono Y.; Asano T.; Sakae Y. J. Organomet. Chem. 2019, 880, 116.
[70]
Lu W.; Chen Y.; Roy V.; Chui S.; Che C. Angew. Chem., Int. Ed. 2009, 48, 7621.
[71]
Carrara S.; Aliprandi A.; Hogan C.; De Cola, L.J. Am. Chem. Soc. 2017, 139, 14605.
[72]
Wang S.; Li W.; Yu Y.; Liu J.; Zhang C. Acta Phys.-Chim. Sin. 2019, 35, 1276. (in Chinese)
[72]
王士昭, 李维军, 俞越, 刘进, 张诚, 物理化学学报, 2019, 35, 1276.).
[73]
Pintp A.; Svahn N.; Lima J.; Robriguez L. Dalton Trans. 2017, 46, 11125.
[74]
Liang J.; Chen Z.; Yin J.; Yu G.; Liu S. Chem. Commun. 2013, 49, 3567.
[75]
Chen Z.; Yang L.; Hu Y.; Wu D.; Yin J.; Yu G.; Liu S. RSC Adv. 2015, 5, 93757.
[76]
Chen Z.; Nie Y.; Liu S. RSC Adv. 2016, 6, 73933.
[77]
Chen Z.; Li Z.; Hu F.; Yu G.; Yin J.; Liu S. Dyes Pigm. 2016, 125, 169.
[78]
Chen Z.; Liu G.; Pu S.; Liu S. Dyes Pigm. 2017, 143, 409.
[79]
Li W.; Luo W.; Li K.; Yuan W.; Zhang Y. Chin. Chem. Lett. 2017, 28, 1300.
[80]
Chen Z.; Liu G.; Pu S.; Liu S. Dyes Pigm. 2018, 159, 499.
[81]
Wang X.; Zhang J.; Dong Y.; Zhang Y.; Yin J.; Liu S. Dyes Pigm. 2018, 156, 74.
[82]
Liang J.; Chen Z.; Xu L.; Wang J.; Yin J.; Yu G.; Chen Z.N.; Liu S. J. Mater. Chem. C 2014, 2, 2243.
[83]
Chen Z.; Wu D.; Han X.; Liang J.; Yin J.; Yu G.; Liu S. Chem. Commun. 2014, 50, 11033.
[84]
Chen Z.; Han X.; Zhang. J.; Wu, D.; Yu, G.; Yin, J.; Liu, S.RSC Adv. 2015, 5, 15341.
[85]
Chen Z.; Zhang J.; Song M.; Yin J.; Yu G.; Liu S. Chem. Commun. 2015, 51, 326.
[86]
Song M.; Chen Z.; Yu G.; Yin J.; Liu S. Chin. J. Org. Chem. 2015, 35, 681. (in Chinese)
[86]
宋敏, 陈钊, 余广鳌, 尹军, 刘盛华, 有机化学, 2015, 35, 681.).
[87]
Chen Z.; Li Z.; Yang L.; Liang J.; Yin J.; Yu G.; Liu S. Dyes Pigm. 2015, 121, 170.
[88]
Han X.; Lu X.; Chen Z.; Yu G..; Yin J.; Liu S. Chin. J. Chem. 2015, 33, 1064.
[89]
Dong Y.; Zhang J.; Li A.; Gong J.; He B.; Xu S.; Yin J.; Liu S.; Tang B.Z. J. Mater. Chem. C 2020, 8, 894.
[90]
Zhang J.; Liu Q.; Wu W.; Peng J.; Zhang H.; Song F.; He B.; Wang X.; Wang X.; Sung H.; Liu S.; Li B.; Lam J.; Tang B.Z. ACS Nano 2019, 13, 3618.
[91]
Zhang J.; He B.; Wu W.; Alam P.; Zhang H.; Gong J.; Song F.; Wang Z.; Sung H.; Williams I.; Wang Z.; Lam J.; Tang B.Z. J. Am. Chem. Soc. 2020, 142, 14608.
[92]
Chen Z.; Liu G.; Pu S.; Liu S. Dyes Pigm. 2018, 152, 54.
[93]
Chen Z.; Huang P.; Li Z.; Yin J.; Yu G.; Liu S. Inorg. Chim. Acta 2015, 432, 192.
[94]
Li J.; Wu P.; Jiang W.; Li B.; Wang B.; Zhu H.; Roesky H. Angew. Chem., Int. Ed. 2020, 59, 10027.
[95]
Bandrowsky T.L.; Carroll J.B.; Braddock-Wilking J. Organometallics 2011, 30, 3559.
文章导航

/