研究简报

水相中可见光下苯甲醇氧化合成喹唑啉酮衍生物的研究

  • 张帆 ,
  • 侯慧青 ,
  • 许秀枝 ,
  • 陈志涛 ,
  • 柯方
展开
  • a 福建医科大学附属第一医院肿瘤内科 福州 350005
    b 福建医科大学药学院 福建省天然药物药理学重点实验室 福州 350004
* Corresponding author. E-mail:

收稿日期: 2020-07-09

  修回日期: 2020-08-20

  网络出版日期: 2020-09-16

基金资助

福建省自然科学基金(2016Y9052); 福建省自然科学基金(2016Y9053); 福建省自然科学基金(2017J01820); 福建省自然科学基金(FJNMP-201902); 福建省自然科学基金(2017-1-64)

Visible-Light-Induced Preparation of Quinazolinones by Oxidation of Benzyl Alcohols in Water

  • Fan Zhang ,
  • Huiqing Hou ,
  • Xiuzhi Xu ,
  • Zhitao Chen ,
  • Fang Ke
Expand
  • a Department of Medical Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005
    b Fujian Provincial Key Laboratory of Natural Medicine Pharmacolog, Department of Pharmacy, Fujian Medical University, Fuzhou 350004

Received date: 2020-07-09

  Revised date: 2020-08-20

  Online published: 2020-09-16

Supported by

the Natural Science Foundation of Fujian Province(2016Y9052); the Natural Science Foundation of Fujian Province(2016Y9053); the Natural Science Foundation of Fujian Province(2017J01820); the Natural Science Foundation of Fujian Province(FJNMP-201902); the Natural Science Foundation of Fujian Province(2017-1-64)

摘要

通过在水相中可见光下2-氨基苯甲酰胺与苄醇氧化制备喹唑啉酮的环化反应, 应用廉价易得、操作简单的单质碘作为光催化剂, 在室温下反应获得较好收率的产物. 目标产物的最高产率可达92%, 为喹唑啉酮类化合物的合成提供了一种绿色经济的方法. 运用此策略合成的N-(2-氟-5-甲基苯基)-6-(2,2,2-三氟乙氧基)蝶啶-4-胺对肿瘤细胞具有明显的抑制活性.

本文引用格式

张帆 , 侯慧青 , 许秀枝 , 陈志涛 , 柯方 . 水相中可见光下苯甲醇氧化合成喹唑啉酮衍生物的研究[J]. 有机化学, 2021 , 41(2) : 833 -841 . DOI: 10.6023/cjoc202007027

Abstract

A novel visible-light-introduced reaction for the construction of quinazolinone derivatives via radical cyclization of 2-aminobenzamides with benzyl alochols under water phase has been developed. The reaction has been achieved in high yield under mild conditions by using I2 as photocatalyst, which is cheap, available and easy to handle. A variety of quinazolinones were obtained in yields up to 92%. It might provide a promising protocol for the synthesis of quinazolinone derivatives. Its application was performed by the synthesis of N-(2-fluoro-5-methylphenyl)-6-(2,2,2-trifluoroethoxy)pteridin-4-amine, which displayed significant inhibitory activity.

参考文献

[1]
(a) Kamble A.A.; Kamble R.R.; Chougala L.S.; Kadadevarmath J.S.; Maidur S.R.; Patil P.S.; Kumbar M.N.; Marganakop S.B. ChemistrySelect 2017, 2, 6882.
[1]
(b) Kamal A.; Bharathi E.V.; Reddy J.S.; Ramaiah M.J.; Dastagiri D.; Reddy M.K.; Viswanath A.; Reddy T.L.; Shaik T.B.; Pushpavalli S. N. C. V. L.; Bhadra M.P. Eur. J. Med. Chem. 2011, 46, 691.
[1]
(c) Chinigo G.M.; Paige M.; Grindrod S.; Hamel E.; Dakshanamurthy S.; Chruszcz M.; Minor W.; Brown M.L. J. Med. Chem. 2008, 51, 4620.
[1]
(d) Keopefly J.B.; Mead J.F.; Brokman J.A. J. Am. Chem. Soc. 1947, 69, 1837.
[1]
(e) Keopefly J.B.; Mead J.F.; Brokman J.A. J. Am. Chem. Soc. 1947, 69, 1048.
[2]
(a) Roopan S.M.; Khan F.N.; Jin J.S.; Kumar R.S. Res. Chem. Intermed. 2011, 37, 919.
[2]
(b) Hour M.J.; Huang L.J.; Kuo S.C.; Xia Y.; Bastow K.; Nakanishi Y.; Hamel E.; Lee K.H. J. Med. Chem. 2000, 43, 4479.
[2]
(c) Wang Z.W.; Wang M.X.; Yao X.; Li Y.; Tan J.; Wang L.Z.; Qiao W.T.; Geng Y.Q.;, Liu Y.X.; Wang Q.M. Eur. J. Med. Chem. 2012, 53, 275.
[2]
(d) Horton D.A.; Bourne G.T.; Smythe M.L. Chem. Rev. 2003, 103, 893.
[3]
(a) Huang W.; Liu J.; Wang C. Chin. J. Org. Chem. 2009, 29, 1533. (in Chinese)
[3]
黄伟平, 刘建利, 王翠玲, 有机化学, 2009, 29, 1533.).
[3]
(b) Cagir A.; Jones S.H.; Gao R.; Eisenhauer B.M. J. Am. Chem. Soc. 2003, 125, 13628.
[4]
(a) Geng H.; Huang P.-Q. Chem. Rec. 2019, 19, 523.
[4]
(b) Wu J.-F.; Huang P.-Q. Chin. Chem. Lett. 2020, 31, 61.
[5]
(a) Vemula S.R.; Kumar D.; Cook G.R. ACS Catal. 2016, 6, 5295.
[5]
(b) Hrast M.; Ro?man K.; Juki? M.; Patin D.; Gobec S.; Sova M. Bioorg. Med. Chem. Lett. 2017, 27, 3529.
[5]
(c) Hase D.V.; Jayaram R.V.; Thirumalai K.; Swaminathan M. ChemistrySelect 2019, 4, 3440.
[5]
(d) Dabiri M.; Lehi N.F.; Movahed S.K.; Khavasi H.R. Eur. J. Org. Chem. 2019, 2933.
[5]
(e) Kumar D.; Vemula S.R.; Cook R. Green Chem. 2015, 17, 4300.
[6]
(a) Parashuram L.; Sreenivasa S.; Akshatha S.; Kumar V.U.; Kumar S. Asian J. Org. Chem. 2017, 6, 1755.
[6]
(b) Laha J.K.; Patel K.V.; Tummalapalli K. S. S; Dayal N. Chem. Commun. 2016, 52, 10245.
[6]
(c) Pariyar G.C.; Mitra B.; Mukherjee S.; Ghosh P. ChemistrySelect 2020, 5, 104.
[6]
(d) Kang H.; Wang W.; Sun Q.; Yang S.; Jin J.; Zhang X.; Ren X.; Zhang J.; Zhou J. Heterocycl. Commun. 2018, 24, 293.
[6]
(e) Rohokale R.S.; Kalshetti R.G.; Ramana C.V. J. Org. Chem. 2019, 84, 2951.
[7]
(a) Majumdar B.; Sarma D.; Jain S.; Sarma T.K. ACS Omega 2018, 3, 13711.
[7]
(b) Tang L.; Zhao X.; Zou G.; Zhou Y.; Yang X. Asian J. Org. Chem. 2016, 5, 335.
[7]
(c) Hakim Siddiki, S. M. A.; Kon, K.; Touchy, A.S.; Shimizu, K.-I. Catal. Sci. Technol. 2014, 4, 1716.
[7]
(d) Parua S.; Das S.; Sikari R.; Sinha S.; Paul N.D. J. Org. Chem. 2017, 82, 7165.
[8]
(a) Alam M.T.; Maiti S.; Mal P. Beilstein J. Org. Chem. 2018, 14, 2396.
[8]
(b) Palem J.D.; Alugubelli G.R.; Bantu R.; Nagarapu L.; Polepalli S.; Jain S.N.; Bathini R.; Manga V. Bioorg. Med. Chem. Lett. 2016, 26, 3014.
[8]
(c) Shang Y.-H.; Fan L.-Y.; Li X.-X.; Liu M.-X. Chin. Chem. Lett. 2015, 26, 1355.
[8]
(d) Hu B.-Q.; Wang L.-X.; Yang L.; Xiang J.-F.; Tang Y.-L. Eur. J. Org. Chem. 2015, 4504.
[8]
(e) Hisano T.; Ichikawa M.; Nakagawa A.; Tsuji M. Chem. Pharm. Bull. 1975, 23, 1910.
[8]
(f) Balakumar C.; Lamba P.; Pran Kishore D.; Lakshmi Narayana B.; Venkat Rao K.; Rajwinder K.; Raghuram Rao A.; Shireesha B.; Narsaiah B. Eur. J. Med. Chem. 2010, 45, 4904.
[8]
(g) Sharif M.; Opalach J.; Langer P.; Beller M.; Wu X. RSC Adv. 2014, 4, 8.
[8]
(h) Zhang Z.; Wang M.; Zhang C.; Zhang Z.; Lu J.; Wang F. Chem. Commun. 2015, 51, 9205.
[8]
(i) Jia F.-C.; Zhou Z.-W.; Xu C.; Wu Y.-D.; Wu A.-X. Org. Lett. 2016, 18, 2942.
[8]
(j) Abdel-Jalil R.J.; Voelter W.; Saeed M. Tetrahedron Lett. 2004, 45, 3475.
[9]
Seuli P.; Siuli D.; Rina S.; Suman S.; Nanda D.P. J. Org. Chem. 2017, 82, 7165.
[10]
Siuli D.; Suman S.; Deepannita S.; Rakesh M.; Gargi C.; Paula B.; Nanda D.P. J. Org. Chem. 2019, 84, 10160.
[11]
(a) Kalay E.; Kucukkececi H.; Kilic H.; Metin O. Chem. Commun. 2020, 56, 5901.
[11]
(b) Kim J.; Kang B.; Hong S.H. ACS Catal. 2020, 10, 6013.
[11]
(c) Ratushnyy M.; Kvasovs N.; Sarkar S.; Gevorgyan V. Angew. Chem., Int. Ed. 2020, 59, 10316.
[11]
(d) He W.-B.; Gao L.-Q.; Chen X.-J.; Wu Z.-L.; Huang Y.; Cao Z.; Xu X.-H.; He W.-M. Chin. Chem. Lett. 2020, 31, 1895.
[11]
(e) Xie L.-Y.; Bai Y.-S.; Xu X.-Q.; Peng X.; Tang H.-S.; Huang Y.; Lin Y. - W.; Cao Z.; He W.-M. Green Chem. 2020, 22, 1720.
[11]
(f) Xie L.-Y.; Liu Y.-S.; Ding H.-R.; Gong S.-F.; Tan J.-X.; He J. - Y.; Cao Z.; He W. - M.Chin. J. Catal. 2020, 41, 1168.
[11]
(g) Peng S.; Lin Y.; He W. Chin. J. Org. Chem. 2020, 40, 541. (in Chinese)
[11]
彭莎, 林英武, 何卫民, 有机化学, 2020, 40, 541.).
[12]
Zhang M.-L.; Ruzi R.; Li N.; Xie J.; Zhu C. Org. Chem. Front. 2018, 5, 749.
[13]
(a) Yang J.; Fu T.; Long Y.; Zhou X.G. Chin. J. Org. Chem. 2017, 37, 1111. (in Chinese)
[13]
杨军, 付婷, 龙洋, 周向葛, 有机化学, 2017, 37, 1111.).
[13]
(b) Li W.; Yin G.; Huang L.; Xiao Y.; Fu Z.; Xin X.; Liu F.; Li Z.; He W. Green Chem. 2016, 18, 4879.
[13]
(c) Luo F.H.; Long Y.; Li Z.K.; Zhou X.G. Acta Chim. Sinica 2016, 74, 805. (in Chinese)
[13]
罗飞华, 龙洋, 李正凯, 周向葛, 化学学报, 2016, 74, 805.).
[13]
(d) Peng S.; Hu D.; Hu J.-L.; Lin Y.-W.; Tang S.-S.; Tang H.-S.; He J.-Y.; Cao Z.; He W.-M. Adv. Synth. Catal. 2019, 361, 5721.
[13]
(e) Zhang R.; Wang G.; Li H.; Duan G.; Wang K.; Xia C. Chin. J. Org. Chem. 2019, 39, 1429. (in Chinese)
[13]
张瑞泽, 王国栋, 李洪爽, 段桂运, 王凯, 夏成才, 化学学报, 2019, 39, 1429.).
[13]
(f) Yue H.; Bao P.; Wang L.; Lv X.; Yang D. Chin. J. Org. Chem. 2019, 39, 463. (in Chinese)
[13]
岳会兰, 鲍鹏丽, 王雷雷, 吕晓霞, 杨道山, 化学学报, 2019, 39, 463.).
[13]
(g) Peng S.; Song Y.-X.; He J.-Y.; Tang S.-S.; Tan J.-X.; Cao Z.; Lin Y.-W.; He W.-M. Chin. Chem. Lett. 2019, 30, 2287.
[14]
Zhong J.-J.; Meng Q.Y.; Liu B.; Li X.-B.; Gao X.-W.; Lei T.; Wu C.-J.; Li Z.-J.; Tung C.-H.; Wu L.-Z. Org. Lett. 2014, 16, 1988.
[15]
Ge W.; Zhu X.; Wei Y. RSC Adv. 2013, 3, 10817.
[16]
(a) Ke F.; Zhang P.; Xu Y.; Lin X.; Lin J.; Lin C.; Xu J. Synlett 2018, 29, 2722.
[16]
(b) Ke F.; Liu C.; Zhang P.; Xu J.; Chen X. Synth. Commun. 2018, 48, 3089.
[16]
(c) Ke F.; Xu Y.; Zhu S.; Lin X.; Lin C.; Zhou S.; Su H. Green Chem. 2019, 21, 4329.
[17]
(a) Hu Y.; Chen L.; Li B. RSC Adv. 2016, 6, 65196.
[17]
(b) Cao L.; Huo H.; Zeng H.; Yu Y.; Lu D.; Gong Y. Adv. Synth. Catal. 2018, 360, 4764.
[17]
(c) Nagasawa Y.; Matsusaki Y.; Nobuta T.; Tada N.; Miura T.; Itoh A. RSC Adv. 2015, 5, 63952.
[17]
(d) Wang Q.; Lv M.; Liu J.; Li Y.; Cao H.; Zhang X.; Xu Q. ChemSusChem 2019, 12, 3043.
[17]
(e) Liu Y.L.; Wang B.; Qiao X.F.; Tung C.-H.; Wang Y.F. ACS Catal. 2017, 7, 4093.
[17]
(f) Eva S.; Lisa-N. U.;, Phung, P. H. Q.; Gwen, S.; Frank, H.; Alexander, V.; Malte, B.Chem.- Eur. J. 2020, 26, 269.
[17]
(g) Yang J.Y.; Xie D.T.; Zhou H.Y.; Chen S.W.; Huo C.D.; Li Z. Org. Chem. Front. 2018, 5, 1325.
[17]
(h) Shang Y.-H.; Fan L.-Y.; Li X.-X.; Liu M.-X., Chin. Chem. Lett. 2015, 26, 1355.
[18]
(a) Doukas J.; Eide L.; Stebbins K.; Racanelli-Layton A.; Dellamary L.; Martin M.; Dneprovskaia E.; Noronha G.; Soll R.; Wrasidlo W.; Acevedo L.M.; Cheresh D.A. J. Pharmacol. Exp. Ther. 2009, 328, 758.
[18]
(b) Duan C.; Jia J.; Zhu R.; Wamg J. J. Heterocycl. Chem. 2012, 49, 865.
[18]
(c) Yang X.; Guan A. J. Fluorine Chem. 2014, 161, 1.
[19]
(a) Yu X.; Gao L.; Jia L.; Yamamoto Y.; Bao M. J. Org. Chem. 2018, 83, 10352.
[19]
(b) Abdullaha M.; Mohammed S.; Ali M.; Kumar A.; Vishwakarma R.A.; Bharate S.B. J. Org. Chem. 2019, 84, 5129.
[19]
(c) Upadhyaya K.; Thakur R.K.; Shukla S.K.; Tripathi R.P. J. Org. Chem. 2016, 81, 5046.
[19]
(d) Senadi G.C.; Kudale V.S.; Wang J.-J. Green Chem. 2019, 21, 979.
[19]
(e) Li F.; Lu L.; Liu P. Org. Lett. 2016, 18, 2580.
[19]
(f) Zheng Y.; Gao C.; Huang R.; Liu Y.; Xue Y.; An L. Asian J. Chem. 2016, 28, 95.
[19]
(g) Feng Y.; Li Y.; Cheng G.; Wang L.; Cui X. J. Org. Chem. 2015, 80, 7099.
文章导航

/