综述与进展

卤素盐参与下有机电合成含氮杂环化合物的研究进展

  • 周娅琴 ,
  • 赵志恒 ,
  • 曾亮 ,
  • 李鸣 ,
  • 何永辉 ,
  • 谷利军
展开
  • a 云南民族大学民族医药学院 民族药资源化学教育部重点实验室 昆明 550025
    b 贵州大学精细化工研究开发中心 绿色农药和农业生物工程教育部重点实验室 贵阳 550025

收稿日期: 2020-07-21

  修回日期: 2020-08-29

  网络出版日期: 2020-09-22

基金资助

国家自然科学基金(21662045); 贵州大学绿色农药实验室开放基金(2018GDGP0103)

Recent Advance in Organic Electrochemical Synthesis of Nitrogenous Heterocyclic Compounds Involving Haloids as Mediators

  • Yaqin Zhou ,
  • Zhiheng Zhao ,
  • Liang Zeng ,
  • Ming Li ,
  • Yonghui He ,
  • Lijun Gu
Expand
  • a Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education,School of Ethnic Medicine, Yunnan Minzu University, Kunmin 650500
    b Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025
* Corresponding authors. E-mail: ,

Received date: 2020-07-21

  Revised date: 2020-08-29

  Online published: 2020-09-22

摘要

含氮杂环化合物广泛存在于医药、农药及天然产物中, 是许多具有生理活性的化合物和药物的基本骨架. 开发高效、绿色的含氮杂环化合物的构建方法具有重要意义. 近年来, 卤素盐参与下有机电合成含氮杂环化合物取得了诸多进展. 该类反应具有操作简单、绿色环保等特点. 综述了有机电化学合成反应中, 卤素盐作媒介, 含氮杂环化合物的合成研究新进展.

本文引用格式

周娅琴 , 赵志恒 , 曾亮 , 李鸣 , 何永辉 , 谷利军 . 卤素盐参与下有机电合成含氮杂环化合物的研究进展[J]. 有机化学, 2021 , 41(3) : 1072 -1080 . DOI: 10.6023/cjoc202007049

Abstract

Nitrogenous heterocyclic compounds are widely found in medicinal molecules, natural products and functional materials. Therefore, it has great significance to develop simple and efficient methods for the construction of these compounds. Recently, remarkable progress has been made in haloids mediated electrochemical synthesis of nitrogen heterocycles. Due to the relatively mild reaction condition and environmental protection, it provides a novel approach to construct nitrogen heterocycles. In this review, the recent developments in this area are summarized.

参考文献

[1]
(a) Sabbasani, V. R.; Wang, K. P.; Streeter, M. D.; Spiegel, D. A. Angew. Chem. Int. Ed. 2019, 58, 18913.
[1]
(b) Draghici, C.; Wang, T.; Spiegel, D. A. Science 2015, 350, 294.
[1]
(c) Wang, S.; Huang, W.; Zhang, X.; Zhang, X.; Pan, C. Chin. J. Org. Chem. 2020, 40, 959. (in Chinese)
[1]
(王淑琴, 黄婉云, 张小蓉, 张晓婷, 潘成学, 有机化学, 2020, 40, 959.)
[1]
(d) Li, M.; Wang, R.; Hao, W.; Jiang, B. Chin. J. Org. Chem. 2020, 40, 1540. (in Chinese)
[1]
(李梦帆, 王榕, 郝文娟, 姜波, 有机化学, 2020, 40, 1540.)
[1]
(e) Zhang, F.; Peng, X.; Ma, J. Chin. J. Org. Chem. 2019, 39, 109. (in Chinese)
[1]
(张发光, 彭星, 马军安, 有机化学, 2019, 39, 109.)
[1]
(f) Sun, Y.; Zhou, L.; Wang, L. Chin. J. Org. Chem. 2019, 39, 3516. (in Chinese)
[1]
(孙悦玮, 周来运, 王兰芝, 有机化学, 2019, 39, 3516.)
[1]
(g) Meng, L.; Wang, Z.-Y. Chin. Chem. Lett. 2013, 24, 780.
[2]
(a) Ye, Z.; Zhang, F. Chin. J. Chem. 2019, 37, 513.
[2]
(b) Liu, Z.; Zhang, Y.-S.; Wei, Y.; Shi, M. Eur. J. Org. Chem. 2020, 2020, 1093.
[2]
(c) Sundar, S.; Rengan, R. Org. Biomol. Chem. 2019, 17, 1402.
[2]
(d) Sridevi, B.; Kandimalla, S. R.; Reddy, B. V. S. Eur. J. Org. Chem. 2019, 2019, 6800.
[2]
(e) Rossi, R.; Angelici, G.; Casotti, G.; Manzini, C.; Lessi, M. Adv. Synth. Catal. 2019, 361, 2737.
[2]
(f) Roslan, I. I.; Ng, K.-H.; Jaenicke, S.; Chuah, G.-K. Catal. Sci. Technol. 2019, 9, 1528.
[2]
(g) Parvatkar, P. T.; Manetsch, R.; Banik, B. K. Chem. Asian J. 2019, 14, 6.
[2]
(h) Salfeena, C. T. F.; Jalaja, R.; Davis, R.; Suresh, E.; Somappa, S. B. Acs Omega 2018, 3, 8074.
[2]
(i) Monga, A.; Bagchi, S.; Sharma, A. New J. Chem. 2018, 42, 1551.
[2]
(j) Felipe-Blanco, D.; Gonzalez-Gomez, J. C. Adv. Synth. Catal. 2018, 360, 2773.
[2]
(k) Donthiboina, K.; Namballa, H. K.; Shaik, S. P.; Nanubolu, J. B.; Shankaraiah, N.; Kamal, A. Org. Biomol. Chem. 2018, 16, 1720.
[2]
(l) Chen, X.; Wang, Z.; Huang, H.; Deng, G.-J. Adv. Synth. Catal. 2018, 360, 4017.
[2]
(m) Zhou, X.; Ma, H.; Shi, C.; Zhang, Y.; Liu, X.; Huang, G. Eur. J. Org. Chem. 2017, 2017, 237.
[2]
(n) Tjutrins, J.; Arndtsen, B. A. Chem. Sci. 2017, 8, 1002.
[2]
(o) Sunkari, S.; Shaik, S. P.; Krishna, N. H.; Rao, A. V. S.; Kodiripaka, B. G.; Alarifi, A.; Kamal, A. Asian J. Org. Chem. 2017, 6, 1830.
[2]
(p) Singh, D.; Kumar, V.; Devi, N.; Malakar, C. C.; Shankar, R.; Singh, V. Adv. Synth. Catal. 2017, 359, 1213.
[2]
(q) Saito, A. ARKIVOC 2017,84.
[3]
(a) Leech, M. C.; Lam, K. Acc. Chem. Res. 2020, 53, 121.
[3]
(b) Jiao, K.-J.; Xing, Y.-K.; Yang, Q.-L.; Qiu, H.; Mei, T.-S. Acc. Chem. Res. 2020, 53, 300.
[3]
(c) Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309.
[3]
(d) Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339.
[3]
(e) Fu, N.; Song, L.; Liu, J.; Shen, Y.; Siu, J. C.; Lin, S. J. Am. Chem. Soc. 2019, 141, 14480.
[3]
(f) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
[4]
(a) Xiong, P.; Xu, H.-H.; Xu, H.-C. J. Am. Chem. Soc. 2017, 139, 2956.
[4]
(b) Yang, Y.-Z.; Wu, Y.-C.; Song, R.-J.; Li, J.-H. Chem. Commun. 2020, 56, 7585.
[4]
(c) Luo, M.-J.; Li, Y.; Ouyang, X.-H.; Li, J.-H.; He, D.-L. Chem. Commun. 2020, 56, 2707.
[4]
(d) Luo, M.-J.; Zhang, T.-T.; Cai, F.-J.; Li, J.-H.; He, D.-L. Chem. Commun. 2019, 55, 7251.
[5]
Tang, H.-T.; Jia, J.-S.; Pan, Y.-M. Org. Biomol. Chem. 2020, 18, 5315.
[6]
Chen, J.; Yan, W. Q.; Lam, C. M.; Zeng, C. C.; Hu, L. M.; Little, R. D. Org. Lett. 2015, 17, 986.
[7]
Wang, H.; Shi, J.; Tan, J.; Xu, W.; Zhang, S.; Xu, K. Org. Lett. 2019, 21, 9430.
[8]
Ma, H.-Y.; Zha, Z.-G.; Zhang, Z.-L.; Meng, L.; Wang, Z.-Y. Chin. Chem. Lett. 2013, 24, 780.
[9]
Wang, Z.-Q.; Meng, X.-J.; Li, Q.-Y.; Tang, H.-T.; Wang, H.-S.; Pan, Y.-M. Adv. Synth. Catal. 2018, 360, 4043.
[10]
Mo, S.-K.; Teng, Q.-H.; Pan, Y.-M.; Tang, H.-T. Adv. Synth. Catal. 2019, 361, 1756.
[11]
Wang, H.; Zhang, J.; Tan, J.; Xin, L.; Li, Y.; Zhang, S.; Xu, K. Org. Lett. 2018, 20, 2505.
[12]
Yang, N.; Lai, Q.; Jiang, H.; Yuan, G. Electrochem. Commun. 2016, 72, 109.
[13]
Yang, N.; Yuan, G. J. Org. Chem. 2018, 83, 11963.
[14]
Zeng, L.; Li, J.; Gao, J.; Huang, X.; Wang, W.; Zheng, X.; Gu, L.; Li, G.; Zhang, S.; He, Y. Green Chem. 2020, 22, 3416.
[15]
Li, W.-C.; Zeng, C.-C.; Hu, L.-M.; Tian, H.-Y.; Little, R. D. Adv. Synth. Catal. 2013, 355, 2884. 17e3498b-27fb-45af-92dd-31161d3fcee8
[16]
Gao, W.-J.; Li, W.-C.; Zeng, C.-C.; Tian, H.-Y.; Hu, L.-M.; Little, R. D. J. Org. Chem. 2014, 79, 9613.
[17]
Tang, S.; Gao, X.; Lei, A. Chem. Commun. 2017, 53, 3354.
[18]
Qian, P.; Yan, Z.; Zhou, Z.; Hu, K.; Wang, J.; Li, Z.; Zha, Z.; Wang, Z. Org. Lett. 2018, 20, 6359.
[19]
Qian, P.; Yan, Z.; Zhou, Z.; Hu, K.; Wang, J.; Li, Z.; Zha, Z.; Wang, Z. J. Org. Chem. 2019, 84, 3148.
[20]
Feng, M.-L.; Li, S.-Q.; He, H.-Z.; Xi, L.-Y.; Chen, S.-Y.; Yu, X.-Q. Green Chem. 2019, 21, 1619.
[21]
Qian, P.; Su, J. H.; Wang, Y.; Bi, M.; Zha, Z.; Wang, Z. J. Org. Chem. 2017, 82, 6434.
[22]
Liang, S.; Zeng, C.-C.; Luo, X.-G.; Ren, F.-z.; Tian, H.-Y.; Sun, B.-G.; Little, R. D. Green Chem. 2016, 18, 2222.
[23]
Liu, K.; Song, C.; Wu, J.; Deng, Y.; Tang, S.; Lei, A. Green Chem. 2019, 21, 765.
[24]
Lv, S.; Han, X.; Wang, J.-Y.; Zhou, M.; Wu, Y.; Ma, L.; Niu, L.; Gao, W.; Zhou, J.; Hu, W.; Cui, Y.; Chen, J. Angew. Chem. Int. Ed. 2020, 59, 11583.
[25]
Jiang, Y.-Y.; Liang, S.; Zeng, C.-C.; Hu, L.-M.; Sun, B.-G. Green Chem. 2016, 18, 6311.
[26]
Jiang, Y.-Y.; Dou, G.-Y.; Xu, K.; Zeng, C.-C. Org. Chem. Front. 2018, 5, 2573.
[27]
Zhang, S.; Li, L.; Xue, M.; Zhang, R.; Xu, K.; Zeng, C. Org. Lett. 2018, 20, 3443.
[28]
Nikolaienko, P.; Jentsch, M.; Kale, A. P.; Cai, Y.; Rueping, M. Chem.-Eur. J. 2019, 25, 7177.
[29]
Li, Y.; Ye, Z.; Chen, N.; Chen, Z.; Zhang, F. Green Chem. 2019, 21, 4035.
[30]
Haupt, J. D.; Berger, M.; Waldvogel, S. R. Org. Lett. 2019, 21, 242.
[31]
Herszman, J. D.; Berger, M.; Waldvogel, S. R. Org. Lett. 2019, 21, 7893.
文章导航

/