综述与进展

近十年Dendralenes催化合成研究进展

  • 祝洁 ,
  • 杨文超 ,
  • 张乘运 ,
  • 吴磊
展开
  • a 南京农业大学理学院化学系 江苏省农药学重点实验室 南京 210095
    b 扬州大学园艺与植物保护学院 江苏扬州 225009

收稿日期: 2020-08-13

  修回日期: 2020-09-03

  网络出版日期: 2020-09-22

基金资助

江苏省自然科学基金面上项目(BK20191305); 南京农业大学中央高校基本科研业务费专项基金(KYDZ201904); 江苏省教育厅“青蓝工程”资助项目

Recent Progress in the Synthesis of Dendralenes: A Decade Update

  • Jie Zhu ,
  • Wenchao Yang ,
  • Chengyun Zhang ,
  • Lei Wu
Expand
  • a Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095
    b College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009
* Corresponding author. E-mail:

Received date: 2020-08-13

  Revised date: 2020-09-03

  Online published: 2020-09-22

Supported by

Natural Science Foundation of Jiangsu Province(BK20191305); Fundamental Research Funds for the Central Universities of Nanjing Agricultural University(KYDZ201904); Qing-Lan Project of Jiangsu Provincial Department of Education

摘要

Dendralenes作为一种含有支链骨架的交叉共轭聚烯烃, 是多种天然产物和光电材料的基本骨架, 也是快速构建手性多环结构的重要中间体, 在功能材料、天然产物化学、聚合物化学和合成化学等诸多领域占据重要地位. Dendralenes的合成与衍生化应用是一个曾经被忽视但正在兴起的领域. 近年来, dendralenes的合成得到了较快发展, 按dendralenes共轭单元数的不同概述了其合成领域的最新成果, 重点介绍反应设计与机理, 并展望了dendralenes的后续合成与应用研究发展.

本文引用格式

祝洁 , 杨文超 , 张乘运 , 吴磊 . 近十年Dendralenes催化合成研究进展[J]. 有机化学, 2021 , 41(3) : 1081 -1097 . DOI: 10.6023/cjoc202008024

Abstract

Dendralenes, also known as acyclic, branched and cross-conjugated polyenes, represent an important class of hydrocarbons. Serving as basic motifs for a number of natural products and photolectric materials as well as key intermediates in the rapid synthesis of polycyclic compounds, dendralenes have recently played a prominent part in the area of material chemistry, polymer chemistry, synthetic chemistry and so on. The study on dendralenes has long been neglected but received renewed attention and witnessed rapid development in recent years. The advanced syntheses of dendralenes in the last decade are summarized and organized in order of the number of conjugated units. The synthetic design and mechanism are highlighted in this review with their future development on synthesis and application proposed as well.

参考文献

[1]
(a) Hopf, H. Angew. Chem.. Int. Ed. 1984, 23, 948.
[1]
(b) Hopf, H. Nature 2009, 460, 183.
[1]
(c) Hopf, H. Angew. Chem., Int. Ed. 2001, 40, 705.
[1]
(d) Sherburn, M. S. Acc. Chem. Res. 2015, 48, 1961.
[1]
(e) Hopf, H.; Sherburn, M. S. Cross Conjugation-Modern Dendralene, Radialene and Fulvene Chemistry, Wiley-VCH, Verlag GmbH & Co. KGaA, 2016.
[2]
Hopf, H. Classics in Hydrocarbon Chemistry: Syntheses, Concepts, Perspectives, Wiley-VCH, Weinheim, 2000, p. 103.
[3]
Paul, R.; Tchelitcheff, S. C. R. Hebd. Seances Acad. Sci. 1951, 232, 1939.
[4]
(a) Bolmquist, A. T.; Verdol, J. A. J. Am. Chem. Soc. 1955, 77, 81;.
[4]
(b) Bailey, W. J.; Ecomomy, J. J. Am. Chem. Soc. 1955, 77, 1133;.
[4]
(c) Bailey, W. J.; Nielsen, N. A. J. Org. Chem. 1962, 27, 3088.
[5]
(a) Bradford, T. A.; Payne, A. D.; Willis, A. C.; Paddon-Row, M. N.; Sherburn, M. S. J. Org. Chem. 2010, 75, 491.
[5]
(b) Hopf, H.; Sherburn, M. S. Angew. Chem.. Int. Ed. 2012, 51, 2298.
[5]
(c) Naidua, G. S.; Singh, R. Ghosh, S. K. Synlett 2018, 29, 282.
[6]
Fielder, S.; Rowan, D. D.; Sherburn, M. S. Angew. Chem., Int. Ed. 2000, 39, 4331.
[7]
Brummond, K. M.; Chen, H.; Sill, P.; You, L. J. Am. Chem. Soc. 2002, 124, 15186.
[8]
Miller, N. A.; Willis, A. C.; Paddon-Row, M. N.; Sherburn, M. S. Angew. Chem., Int. Ed. 2007, 46, 937.
[9]
Payne, A. D.; Bojase, G.; Paddon-Row, M. N.; Sherburn, M. S. Angew. Chem., Int. Ed. 2009, 48, 4836.
[10]
(a) Stehling, L.; Wilke, G. Angew. Chem.. Int. Ed. 1988, 27, 571.
[10]
(b) Payne, A. D.; Willis, A. C.; Sherburn, M. S. J. Am. Chem. Soc. 2005, 127, 12188.
[10]
(c) Pellissier, H. Tetrahedron 2005, 61, 6479.
[10]
(d) Frontier, A. J.; Collison, C. Tetrahedron 2005, 61, 7577.
[10]
(e) Tius, M. A. Eur. J. Org. Chem. 2005,2193.
[10]
(f) Pronin, S. V.; Shenvi, R. A. J. Am. Chem. Soc. 2012, 134, 19604;. 39ef1d2f-797f-4223-b3ac-b34dd9f23b4f
[10]
(g) Fallon, T.; Willis, A. C.; Paddon-Row, M. N.; Sherburn, M. S. J. Org. Chem. 2014, 79, 3185.
[10]
(h) Desfeux, C.; Besnard, C.; Mazet, C. Org. Lett. 2020, 22, 8181.
[11]
(a) Bloomquist, A. T.; Verdol, J. A. J. Am. Chem. Soc. 1955, 77, 81.
[11]
(b) Bailey, W. J.; Economy, J. J. Am. Chem. Soc. 1955, 77, 1133.
[11]
(c) Bloomquist, A. T.; Verdol, J. A. J. Am. Chem. Soc. 1955, 77, 1806.
[11]
(d) Bailey, W. J.; Cunov, C. H.; Nicholas, L. J. Am. Chem. Soc. 1955, 77, 2787.
[11]
(e) Martin, H. D.; Echert-Macsic, M.; Mayer, B. Angew. Chem.. Int. Ed. 1980, 19, 807.
[11]
(f) Hopf, H. Angew. Chem.. Int. Ed. 1982, 21, 286.
[11]
(g) Hopf, H. Angew. Chem.. Int. Ed. 1984, 96, 947.
[11]
(h) Brain, P. T.; Smart, B. A.; Robertson, H. E.; Davis, M. J.; H. Rankin, D. W.; Henry, W. J.; Gosney, I. J. Org. Chem. 1997, 62, 2767.
[11]
(i) Woo, S.; Squires, N.; Fallis, A. G. Org. Lett. 1999, 1, 573.
[11]
(j) Woo, S.; Legoupy, S.; Parra, S.; Fallis, A. G. Org. Lett. 1999, 1, 1013.
[11]
(k) Le N?tre, J.; Martinez,, A. A.; Dixneuf,, P. H.; Bruneau,, C. Tetrahedron 2003, 59, 9425.
[11]
(l) Park, S.; Lee, D. Synthesis 2007,2313.
[12]
(a) Shimizu, M.; Kurahashi, T.; Shimono, K.; Tanaka, K.; Nagao, I.; Kiyomoto, S.; Hiyama, T. Chem.-Asian J. 2007, 2, 1400.
[12]
(b) Bojase, G.; Payne, A. D.; Willis, A. C.; Sherburn, M. S. Angew. Chem.. Int. Ed. 2008, 47, 910.
[13]
George, J.; Ward, J. S.; Sherburn, M. S. Chem. Sci. 2019, 10, 9969.
[14]
Ghosh, S. K.; Singh, R.; Date, S. M. Chem. Commun. 2003,636.
[15]
Singh, R.; Ghosh, S. K. Chem. Commun. 2011, 47, 10809.
[16]
(a) Singh, R.; Naidu, G. S.; Ghosh, S. K. Proc. Natl. Acad. Sci.. India, Sect. A Phys. Sci. 2016, 86, 619.
[16]
(b) Naidu, G. S.; Singh, R.; Kumarb, M.; Ghosh, S. K. RSC Adv. 2016, 6, 37136.
[17]
Rahif, M.; Roux, M.; Thibonnet, J.; Parrain, J.-L. Mol. Diversity 2013, 17, 49.
[18]
(a) Ma, S. Chem. Rev. 2005, 105, 2829.
[18]
(b) Ye, J.; Ma, S. Acc. Chem. Res. 2014, 47, 989.
[18]
(c) Jia, M.; Ma, S. Angew. Chem.. Int. Ed. 2016, 55, 9134.
[19]
Wang, H.; Beiring, B.; Yu, D.-G.; Collins, K. D.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52, 12430.
[20]
Qiu, Y.; Posevins, D.; B?ckvall, J.-E. Angew. Chem., Int. Ed. 2017, 56, 13112.
[21]
Zhang, T.; Song, C.; Meng, Y.; Chen, P.; Xu, H.; Chang, J. J. Org. Chem. 2017, 82, 9905.
[22]
(a) Lu, X.-Y.; Zhang, C.-M.; Xu, Z.-R. Acc. Chem. Res. 2001, 34, 535.
[22]
(b) Cowen, B. J.; Miller, C. J. Chem. Soc. Rev. 2009, 38, 3102.
[22]
(c) Pei, C.-K. Shi, M. Chem.-Eur. J. 2012, 18, 6712. 42d445b1-4d74-44a8-ae66-c143c537e548
[23]
(a) Yang, Y.; Qiu, X.; Zhao, Y.; Mu, Y.; Shi, Z. J. Am. Chem. Soc. 2016, 138, 495.
[23]
(b) Yang, Y.; Li, R.; Zhao, Y.; Zhao, D.; Shi, Z. J. Am. Chem. Soc. 2016, 138, 8743.
[24]
Mao, M.; Zhang, L.; Chen, Y.-Z.; Zhu, J.; Wu, L. ACS Catal. 2017, 7, 181.
[25]
Xia, Y.-T.; Xie, X.-Y.; Cui, S.-H.; Ji, Y.-G.; Wu, L. Chem. Commun. 2019, 55, 11699.
[26]
Xia, Y.-T.; Wu, J.-J.; Zhang, C.-Y.; Mao, M.; Ji, Y.-G.; Wu, L. Org. Lett. 2019, 21, 6383.
[27]
Rivera-Chao, E.; Fa?anás-Mastral, M. Angew. Chem., Int. Ed. 2018, 57, 9945.
[28]
Li, H.; Gontla, R.; Flegel, J.; Merten, C.; Ziegler, S.; Antonchick, A. P.; Waldmann, H. Angew. Chem., Int. Ed. 2019, 58, 307.
[29]
Frank, B. B.; Kivala, M.; Blanco, B. C.; Breiten, B.; Schweizer, W. B.; Laporta, P. R.; Biaggio, I.; Jahnke, E.; Tykwinski, R. R.; Boudon, C.; Gisselbrecht, J.-P.; Diederich, F. Eur. J. Org. Chem. 2010,2487.
[30]
Yamauchi, T.; Shibata, Y.; Aki, T.; Yoshimura, A.; Yao, M.; Misaki, Y. Chem. Lett. 2018, 47, 1176.
[31]
Januszewski, J. A.; Hampel, F.; Neiss, C.; G?rling, A.; Tykwinski, R. R. Angew. Chem., Int. Ed. 2014, 53, 3743.
[32]
Saglam, M. F.; Fallon, T.; Paddon-Row, M. N.; Sherburn, M. S. J. Am. Chem. Soc. 2016, 138, 1022.
[33]
Polák, P.; Tobrman, T. Eur. J. Org. Chem. 2019,957.
[34]
Lippincott, D. J.; Linstadt, R. T. H.; Maser, M. R.; Lipshutz, B. H. Angew. Chem., Int. Ed. 2017, 56, 847.
[35]
(a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
[35]
(b) Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002, 124, 11586.
[35]
(c) Ishiyama, T.; Miyaura, N. Chem. Rec. 2004, 3, 271.
[35]
(d) Clay, J. M.; Vedejs, E. J. Am. Chem. Soc. 2005, 127, 5766.
[35]
(e) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.
[36]
Deng, Y.; Bartholomeyzik, T.; Persson, A. K. ?.; Sun, J.; B?ckvall, J.-E. Angew. Chem., Int. Ed. 2012, 51, 2703.
[37]
Deng, Y.; Bartholomeyzik, T.; B?ckvall, J.-E. Angew. Chem., Int. Ed. 2013, 52, 6283.
[38]
Bartholomeyzik, T.; Pendrill, R.; Lihammar, R.; Jiang, T.; Widmalm, G.; B?ckvall, J.-E. J. Am. Chem. Soc. 2018, 140, 298.
[39]
Volla, C.; M., R.; Ba?ckvall, J.-E. Angew. Chem., Int. Ed. 2013, 52, 14209.
[40]
Volla, C. M. R.; Mazuela, J.; Ba?ckvall, J.-E. Chem.-Eur. J. 2014, 20, 7608. 612af94e-9bb6-475a-b483-a43afb87ebb1
[41]
Yang, B.; Qiu, Y.; B?ckvall, J.-E. Acc. Chem. Res. 2018, 51, 1520.
[42]
Volla, C. M. R.; B?ckvall, J.-E. ACS Catal. 2016, 6, 6398.
[43]
Zhu, C.; Yang, B.; Qiu, Y.; B?ckvall, J.-E. Angew. Chem., Int. Ed. 2016, 55, 14405.
[44]
Naidu, V. R.; Posevins, D.; Volla, C. M. R.; B?ckvall, J.-E. Angew. Chem., Int. Ed. 2017, 56, 1590.
[45]
Jonek, A.; Berger, S.; Haak, E. Chem.-Eur. J. 2012, 18, 15504. 626a977e-2498-4edb-bb1b-ae34a1d2499a
[46]
Thies, N.; Haak, E. Angew. Chem., Int. Ed. 2015, 54, 4097.
[47]
Sakashita, K.; Shibata, Y.; Tanaka, K. Angew. Chem., Int. Ed. 2016, 55, 6753.
[48]
Li, L.; Luo, P.; Deng, Y.; Shao, Z. Angew. Chem., Int. Ed. 2019, 58, 4710.
文章导航

/