研究论文

三聚氯氰催化及溶剂效应实现温和高效的酮肟贝克曼重排反应

  • 周婷婷 ,
  • 刘霞 ,
  • 叶子航 ,
  • 周奕鹏 ,
  • 杨雅淇 ,
  • 徐清
展开
  • 1 温州大学化学与材料工程学院 浙江温州 325035
* Corresponding author. E-mail: qing-xu@wzu.edu.cn

收稿日期: 2020-08-12

  修回日期: 2020-09-18

  网络出版日期: 2020-09-30

基金资助

国家自然科学基金(21672163); 浙江省自然科学基金杰出青年基金(LR14B020002)

Cyanuric Chloride Catalysis and Solvent Effect Leading to a Mild and Efficient Beckmann Rearrangement of Ketoximes

  • Tingting Zhou ,
  • Xia Liu ,
  • Zihang Ye ,
  • Yipeng Zhou ,
  • Yaqi Yang ,
  • Qing Xu
Expand
  • 1 College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035

Received date: 2020-08-12

  Revised date: 2020-09-18

  Online published: 2020-09-30

Supported by

the National Natural Science Foundation of China(21672163); the Natural Science Foundation of Zhejiang Province for Distinguished Young Scholars(LR14B020002)

摘要

与其他溶剂的效果显著不同, 以六氟异丙醇为溶剂时, 低用量三聚氯氰可在室温下高效催化酮肟的贝克曼重排反应得到相应的酰胺产物. 本方法操作简便, 催化剂用量少, 溶剂可回收再利用, 条件温和, 官能团兼容性好, 适用底物范围广, 产物收率高, 是一种制备酰胺化合物的相对绿色实用的方法.

本文引用格式

周婷婷 , 刘霞 , 叶子航 , 周奕鹏 , 杨雅淇 , 徐清 . 三聚氯氰催化及溶剂效应实现温和高效的酮肟贝克曼重排反应[J]. 有机化学, 2021 , 41(2) : 688 -694 . DOI: 10.6023/cjoc202008018

Abstract

By using hexafluoroisopropanol as the solvent, a low loading of cyanuric chloride could effectively catalyze the Beckmann rearrangement of ketoximes to obtain the corresponding amide products under mild conditions, such as room temperature and air atmosphere. The effect of hexafluoroisopropanol was greatly different from that of other solvents. This method has the advantages of simple operation, low catalyst loading, recoverability of solvent, mild conditions, good tolerance of the functional groups, broad substrate scope and high product yields. It is a relatively green and practical method for the preparation of amide compounds.

参考文献

[1]
(a) Li X.; Xiog W.; Zheng Y. Pharm. J. Chin. People's Liberation Army 2007, 23, 56. (in Chinese)
[1]
李晓慧, 熊伟, 郑应华, 解放军药学学报, 2007, 23, 56.).
[1]
(b) Zheng Y.; Guo Q.; Yu Z. Fine Chem. Intermed. 2015, 45, 1. (in Chinese)
[1]
郑玉国, 郭晴晴, 余忠林, 精细化工中间体, 2015, 45, 1.).
[1]
(c) Huang P. Acta Chim. Sinica 2018, 76, 357. (in Chinese)
[1]
黄培强, 化学学报, 2018, 76, 357.).
[2]
Zhou Y; Lu J.; Zhu M. Synth. Fiber Ind. 2015, 38, 51. (in Chinese)
[2]
周云, 卢建国, 朱明乔, 合成纤维工业, 2015, 38, 51.).
[3]
(a) Chen H.; Dai W.; Chen Y.; Xu Q.; Chen J.; Yu L.; Zhao Y.; Ye M.; Pan Y. Green Chem. 2014, 16, 2136.
[3]
(b) Li Y.; Chen H.; Liu J.; Wan X.; Xu Q. Green Chem. 2016, 18, 4865.
[3]
(c) Ma X.; Li B.; Xiao Y.; Yu X.; Su C.; Xu Q. Chin. J. Org. Chem. 2017, 37, 2034. (in Chinese)
[3]
马献涛, 李波, 肖映林, 余小春, 苏陈良, 徐清, 有机化学, 2017, 37, 2034.).
[4]
Beckmann E. Chem. Ber. 1886, 89, 988.
[5]
Donaruma L.G.; Heldt W.Z. Org. React. 1960, 11, 1.
[6]
Zhang J.; Liu Y.; Feng W.; Wu Y. Chin. J. Org. Chem. 2019, 39, 961. (in Chinese)
[6]
张健, 刘园园, 冯维春, 武玉民, 有机化学, 2019, 39, 961.).
[7]
Rohokale S.V.; Kote S.R.; Deshmukh S, R.; Thopate, S.R.Chem. Pap. 2014, 68, 575.
[8]
Guo S.; Du Z.; Zhang S.; Li D.; Li Z.; Deng Y. Green Chem. 2006, 8, 296.
[9]
Li D.; Mao D; Li J.; Zhou Y.; Wang J. Appl. Catal., A 2016, 510, 125.
[10]
(a) Liu L.-F.; Liu H.; Pi H.-J.; Yang S.; Yao M.; Du W.; Deng W.-P. Synth. Commun. 2011, 41, 553.
[10]
(b) An N.; Pi H.; Liu L.; Du W.; Deng W. Chin. J. Chem. 2011, 29, 947.
[11]
Li Z.; Lu Z.; Ding R.; Yang J. J. Chem. Res. 2006, 2006, 668.
[12]
Yan P.; Batamack P.; Prakash G. K. S.; Olah G.A. Catal. Lett. 2006, 103, 165.
[13]
Zhang X.; Mao D.; Leng Y.; Zhou. Y.; Wang, J.Catal Lett. 2013, 143, 193.
[14]
Furuya Y.; Ishihara K.; Yamamoto H. J. Am. Chem. Soc. 2005, 127, 11240.
[15]
(a) Betti C.; Landini D.; Maia A.; Pasi M. Synlett 2008, 908.
[15]
(b) Maia A.; Albanese D. C. M.; Landini D. Tetrahedron 2012, 68, 1947.
[16]
Hashimoto M.; Obora Y.; Ishii Y. Org. Process Res. Dev. 2009, 13, 411.
[17]
Srivastava V.P.; Patel R.; Garima; Yadav, L. D. S.Chem. Commun. 2010, 46, 5808.
[18]
Kalkhambkar R.G.; Savanura H.M. RSC Adv. 2015, 5, 60106.
[19]
Patil D.; Dalal D. Synth. Commun. 2013, 43, 118.
[20]
(a) Ikushima Y.; Hatakeda K.; Sato O.; Yokoyama T.; Arai M. J. Am. Chem. Soc. 2000, 122, 1908.
[20]
(b) Yamaguchi Y.; Yasutake N.; Nagaoka M. J. Mol. Struct.: THEOCHEM 2003, 639, 137.
[21]
Mao D.; Lu G.; Chen Q. React. Kinet. Catal. Lett. 2002, 75, 75.
[22]
Yang Q.-L.; Li Y.-Q.; Ma C.; Fang P.; Zhang X.-J.; Mei T.-S. J. Am. Chem. Soc. 2017, 139, 3293.
[23]
Kim B.R.; Sung G.H.; Kim J.-J.; Yoon Y.-J. J. Korean Chem. Soc. 2013, 57, 295.
[24]
Xie F.; Du C.; Pang Y.; Lian X.; Xue C.; Chen Y.; Wang X.; Cheng M.; Guo C.; Lin B.; Liu Y. Tetrahedron Lett. 2016, 57, 5820.
[25]
Zhi P.; Xi Z.-W.; Wang D.-Y.; Wang W.; Liang X.-Z.; Tao F.-F.; Shen R.-P.; Shen Y. New J. Chem. 2019, 43, 709.
[26]
Jefferies L.R.; Weber S.R.; Cook S.P. Synlett 2015, 26, 331.
[27]
Beinker P.; Hanson J.R.; Meindl N.; Medina I. C. R.J. Chem. Res. ( S ) 1998, 204.
[28]
Gao Y.; Liu J.; Li Z.; Guo T.; Xu S.; Zhu H.; Wei F.; Chen S.; Hailemariam G.; Guo K. J. Org. Chem. 2018, 83, 2040.
[29]
Pelagalli R.; Chiarotto I.; Feroci M.; Vecchio S. Green Chem. 2012, 14, 2251.
[30]
Choudhary V.R.; Dumbre D.K. Catal. Commun. 2011, 12, 1351.
[31]
Sharley D. D. S.; Williams J. M. J.Chem. Commun. 2017, 53, 2020.
文章导航

/