研究论文

微波促进合成苝单酰亚胺类化合物

  • 王雅楠 ,
  • 王冲 ,
  • 祁禹鸣 ,
  • 李国凯 ,
  • 李小六 ,
  • 王克让
展开
  • 1 河北大学化学与环境科学学院 药物化学与分子诊断教育部重点实验室 河北省化学生物学重点实验室 河北保定 071002
* Corresponding authors. E-mail: ;
† 共同第一作者(These authors contributed equally to this work).

收稿日期: 2020-08-09

  修回日期: 2020-09-27

  网络出版日期: 2020-10-15

基金资助

国家自然科学基金(21572044); 国家自然科学基金(21778013); 河北省科技厅(19241303D)

Microwave-Assisted Synthesis of Perylene Monoimide Derivatives

  • Ya'nan Wang ,
  • Chong Wang ,
  • Yuming Qi ,
  • Guokai Li ,
  • Xiaoliu Li ,
  • Kerang Wang
Expand
  • 1 Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002

Received date: 2020-08-09

  Revised date: 2020-09-27

  Online published: 2020-10-15

Supported by

the National Natural Science Foundation of China(21572044); the National Natural Science Foundation of China(21778013); and the Foundation of the Department of Science and Technology of Hebei Province(19241303D)

摘要

以3,4;9,10-苝四甲酸酐为原料, 经微波促进反应探讨了反应底物用量、反应时间和反应温度等条件对反应收率的影响, 合成了系列苝单酰亚胺类化合物, 其中2,6-二异丙基苯胺修饰的苝单酰亚胺化合物N-2',6'-二异丙基苯胺基- 3,4-苝单酰亚胺(PMI-1)在30 min的反应时间内, 分离收率可达64.1%.

本文引用格式

王雅楠 , 王冲 , 祁禹鸣 , 李国凯 , 李小六 , 王克让 . 微波促进合成苝单酰亚胺类化合物[J]. 有机化学, 2021 , 41(2) : 702 -707 . DOI: 10.6023/cjoc202008010

Abstract

A fast and efficient method for the synthesis of aromatic amine modified perylene monoimide derivatives based on microwave-assisted reaction was developed. It is found that the amount of 2,6-diisopropylaniline showed very important influences on the synthetic yield. N-2',6'-Diisopropylanilino-3,4-perylene monoimide (PMI-1) was obtained with the isolated yield of 64.1% under the optimized condition of 7 equiv. of 2,6-diisopropylaniline at 170 ℃ and 80 W for 30 min.

参考文献

[1]
Weil T.; Vosch T.; Hofkens J.; Peneva K.; Müllen K. Angew. Chem. Int. Ed. 2010, 49, 9068.
[2]
Bell T. D. M.; Stefan A.; Lemaur V.; Bernhardt S.; Müllen K.; Cornil J.; Beljonne D.; Hofkens J.; der Quweraer M.V.; Schryver F.C. D. Photochem. Photobiol. Sci. 2007, 6, 406.
[3]
(a) Sekita M.; Jiménez á.J.; Marcos M.L.; Caballero E.; Rodríguez-Morgade M.S.; Guldi D.M.; Torres T. Chem. - Eur. J. 2015, 21, 19028.
[3]
(b) Bolag A.; Sakai N.; Matile S. Chem. - Eur. J. 2016, 22, 9006.
[3]
(c) Cheriya R.T.; Joy J.; Alex A.P.; Shaji A.; Hariharan M. J. Phys. Chem. C 2012, 116, 12489.
[3]
(d) Li C.; Yan H.; Zhang G.F.; Gong W.L.; Chen T.; Hu R.; Aldred M.P.; Zhu M.Q. Chem. - Asian J. 2014, 9, 104.
[4]
Lewandowska U.; Zajaczkowski W.; Pisula W.; Ma Y.; Li C.; Müllen K.; Wennemers H. Chem. - Eur. J. 2016, 22, 3804.
[5]
Warnan J.; Willkomm J.; Farré Y.; Pellegrin Y.; Boujtita M.; Odobel F.; Reisner E. Chem. Sci. 2019, 10, 2758.
[6]
Kaloyanova S.; Zagranyarski Y.; Ritz S.; Hanulov? M.; Koynov K.; Vonderheit A.; Müllen K.; Peneva K. J. Am. Chem. Soc. 2016, 138, 2881.
[7]
Quante H.; Müllen K. Angew. Chem. Int. Ed. Engl. 1995, 34, 1323.
[8]
(a) Hutchison J.A.; Uji-I H.; Deres A.; Vosch T.; Rocha S.; Müller S.; Bastian A.A.; Enderlein J.; Nourouzi H.; Li C.; Herrmann A.; Müllen K.; Schryver F.D.; Hofkens J. Nat. Nanotechnol. 2014, 9, 131.
[8]
(b) Chen L.; Li C.; Müllen K. J. Mater. Chem. C 2014, 2, 1938.
[8]
(c) Schmaltz B.; Weil T.; Müllen K. Adv. Mater. 2009, 21, 1067.
[8]
(d) Berberich M.; Würthner F. Chem. Sci. 2012, 3, 2771.
[8]
(e) Chen L.; Li C.; Müllen K. J. Mater. Chem. C 2014, 2, 1938.
[8]
(f) Schmaltz B.; Weil T.; Müllen K. Adv. Mater. 2009, 21, 1067.
[8]
(g) Berberich M.; Würthner F. Chem. Sci. 2012, 3, 2771.
[9]
Feiler L.; Langhals H.; Polborn K. Liebigs Ann. 1995, 1229.
[10]
(a) Cheriya R.T.; Joy J.; Alex A.P.; Shaji A.; Hariharan; M. J. Phys. Chem. C 2012, 116, 12489.
[10]
(b) Li C.; Yan H.; Zhang G.F.; Gong W.L.; Chen T.; Hu R.; Aldred M.P.; Zhu M.Q. Chem. - Asian J. 2014, 9, 104.
[10]
(c) Wei H.; Jiang N.; Zhao N.; Zhang Y.; Gao B. Chin. J. Chem. 2014, 32, 356.
[11]
Langhals H.; von Unold P.; Speckbacher M. Liebigs Ann./Recl. 1997, 467.
[12]
Geerts Y.; Quante H.; Platz H.; Mahrt R.; Hopmeier M.; B?hm A.; Müllen K. J. Mater. Chem. 1998, 8, 2357.
[13]
(a) Tr?ster H. Dyes Pigm. 1983, 4, 171.
[13]
(b) Tam-Chang S.W.; Seo W.; Iverson I.K. J. Org. Chem. 2004, 69, 2719.
[13]
(c) Huang L.; Catalano V.J.; Tam-Chang S.W. Chem. Commun. 2007, 2016.
[14]
Chen L.; Zhang K.; Zhu L.; Xiao Y. Ind. Eng. Chem. Res. 2015, 54, 12699.
[15]
(a) Yi X.; Zhang Z.; Huang H. Baell J.B.; Yu Y.; Huang F. Chin. J. Org. Chem. 2019, 39, 544. (in Chinese)
[15]
易享炎, 张志鹏, 黄和, Jonathan B. Baell, 于杨, 黄菲, 有机化学, 2019, 39, 544.).
[15]
(b) Yan X.; Li J.; Zhang Q.; Shi D. Chin. J. Org. Chem. 2017, 37, 1450. (in Chinese)
[15]
闫小惠, 李加荣, 张奇, 史大昕, 有机化学, 2017, 37, 1450.).
[15]
(c) Roberts B.A.; Strauss C.R. Acc. Chem. Res. 2005, 38, 653.
[16]
Rigodanza F.; Tenori E.; Bonasera A.; Syrgiannis Z.; Prato M. Eur. J. Org. Chem. 2015, 5060.
[17]
Pengo P.; Pantos G.D.; Otto S.; Sanders J. K. M. J. Org. Chem. 2006, 71, 7063.
[18]
Tambara K.; Ponnuswamy N.; Hennrich G.; Panto? G.D. J. Org. Chem. 2011, 76, 3338.
[19]
Sekita M.; Jiménez á.J.; Marcos M.L.; Caballero E.; Rodríguez-Morgade M.S.; Guldi D.M.; Torres T. Chem. - Eur. J. 2015, 21, 19028.
[20]
Chen Z.; Stepanenko V.; Dehm V.; Prins P.; Siebbeles L. D. A.; Seibt J.; Marquetand P.; Engel V.; Würthner F. Chem. - Eur. J. 2007, 13, 436.
文章导航

/