含四元环的多环芳香化合物的研究进展
收稿日期: 2020-08-20
修回日期: 2020-09-28
网络出版日期: 2020-10-22
基金资助
国家自然科学基金青年基金(51603055); 黑龙江省自然科学基金(QC2017055)
Recent Advances of Polycyclic Aromatic Compounds Containing Four-Membered Rings
Received date: 2020-08-20
Revised date: 2020-09-28
Online published: 2020-10-22
Supported by
National Natural Science Foundation of China(51603055); Natural Science Foundation of Heilongjiang Province(QC2017055)
崔英翠 , 夏德斌 . 含四元环的多环芳香化合物的研究进展[J]. 有机化学, 2021 , 41(3) : 907 -918 . DOI: 10.6023/cjoc202008036
Polycyclic aromatic compounds containing four-membered rings usually exhibit unique photophysical and chemical properties, and have potential application value in many fields. The synthesis methods, intermolecular stacking behaviors, photoelectric properties and carrier mobilities of linear, angular, helical, and ring-shaped polycyclic aromatic compounds containing four-membered rings are reviewed. The research shows that the surface synthesis method is more conducive to the preparation of regular-shaped polycyclic aromatic compounds, linear molecules show higher carrier mobilities, angular molecules usually show higher anti-aromaticity, and helical molecules have optical rotation properties and a larger optical band gap. It should be emphasized that the numbers of four-membered rings and its position in molecules have a decisive influence on their photoelectric properties.
[1] | (a) Della, Sala, P.; Capobianco,, A.; Caruso,, T.; Talotta,, C.; De, Rosa, M.; Neri,, P.; Peluso,, A.; Gaeta,, C. J. Org. Chem. 2018, 83, 220. |
[1] | (b) Kometani, A.; Inagaki, Y.; Mutoh, K.; Abe, J. J. Am. Chem. Soc. 2020, 142, 7995. |
[2] | (a) Thakellapalli, H.; Li, S. J.; Farajidizaji, B.; Baughman, N. N.; Akhmedov, N. G.; Popp, B. V.; Wang, K. K. Org. Lett. 2017, 19, 2674. |
[2] | (b) Lu, D. P.; Zhuang, G. L.; Jia, H. X.; Wang, J. Y.; Huang, Q.; Cui, S. S.; Du, P. W. Org. Chem. Front. 2018, 5, 1446. |
[2] | (c) Fan, W. J.; Yamago, S. Angew. Chem., Int. Ed. 2019, 58, 7113. |
[2] | (d) Han, Y.; Xue, Z.; Li, G.; Gu, Y.; Ni, Y.; Dong, S.; Chi, C. Angew. Chem., Int. Ed. 2020, 59, 9026. |
[3] | (a) Gantenbein, M.; Li, X.; Sangtarash, S.; Bai, J.; Olsen, G.; Alqorashi, A.; Hong, W.; Lambert, C. J.; Bryce, M. R. Nanoscale 2019, 11, 20659. |
[3] | (b) Takano, H.; Shiozawa, N.; Imai, Y.; Kanyiva, K. S.; Shibata, T. J. Am. Chem. Soc. 2020, 142, 4714. |
[4] | (a) Zhao, K.; Pan, Z.; Zhong, X. J. Phys. Chem. Lett. 2016, 7, 406. |
[4] | (b) Ong, W. J.; Swager, T. M. Nat. Chem. 2018, 10, 1023. |
[5] | (a) Kayahara, E.; Sun, L. S.; Onishi, H.; Suzuki, K.; Fukushima, T.; Sawada, A.; Kaji, H.; Yamago, S. J. Am. Chem. Soc. 2017, 139, 18480. |
[5] | (b) Zhang, X.-S.; Huang, Y.-Y.; Zhang, J.; Meng, W.; Peng, Q.; Kong, R.; Xiao, Z.; Liu, J.; Huang, M.; Yi, Y.; Chen, L.; Fan, Q.; Lin, G.; Liu, Z.; Zhang, G.; Jiang, L.; Zhang, D. Angew. Chem., Int. Ed. 2020, 59, 3529. |
[5] | (c) Zhao, M.; Zhang, B.; Miao, Q. Angew. Chem., Int. Ed. 2020, 59, 9678. |
[6] | Povie, G.; Segawa, Y.; Nishihara, T.; Miyauchi, Y.; Itami, K. J. Am. Chem. Soc. 2018, 140, 10054. |
[7] | (a) Su, J. K.; Feist, J. D.; Yang, J.; Mercer, J. A. M.; Romaniuk, J. A. H.; Chen, Z.; Cegelski, L.; Burns, N. Z.; Xia, Y. J. Am. Chem. Soc. 2018, 140, 12388. |
[7] | (b) Yang, J.; Horst, M.; Romaniuk, J. A. H.; Jin, Z.; Cegelski, L.; Xia, Y. J. Am. Chem. Soc. 2019, 141, 6479. |
[8] | Liu, S.; Jin, Z.; Teo, Y. C.; Xia, Y. J. Am. Chem. Soc. 2014, 136, 17434. |
[9] | Li, L. Guangzhou Chem. Ind. 2017, 45, 1. (in Chinese) |
[9] | (李璐, 广州化工, 2017, 45, 1.) |
[10] | (a) Xia, D.; Wang, X.-Y.; Guo, X.; Baumgarten, M.; Li, M.; Müllen, K. Cryst. Growth Des. 2016, 16, 7124. |
[10] | (b) Li, Y.; Concellón, A.; Lin, C.-J.; Romero, N. A.; Lin, S.; Swager, T. M. Chem. Sci. 2020, 11, 4695. |
[10] | Liu, B. K.; Zhang, Y. L.; Chen, Y.; Liu, X. G.; Zhang, L. Chin. J. Org. Chem. 2020, 40, 2879. (in Chinese) |
[10] | (刘秉康, 张艳丽, 陈瑜, 刘旭光, 张磊, 有机化学, 2020, 40, 2879.) |
[11] | Dengiz, C.; Luppino, S. P.; Gutierrez, G. D.; Swager, T. M. J. Org. Chem. 2017, 82, 7470. |
[12] | Stanger, A.; Monaco, G.; Zanasi, R. ChemPhysChem 2020, 21, 65. |
[13] | Hua, Y.; Zhang, H.; Xia, H. Chin. J. Org. Chem. 2018, 38, 11. (in Chinese) |
[13] | (华煜晖, 张弘, 夏海平, 有机化学, 2018, 38, 11.) |
[14] | Anthony, J. E. Angew. Chem., Int. Ed. 2008, 47, 452. |
[15] | (a) Berris, B. C.; Hovakeemian, G. H.; Lai, Y. H.; Mestdagh, H.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1985, 107, 5670. |
[15] | (b) Hirthammer, M.; Vollhardt, K. P. J. Am. Chem. Soc. 1986, 108, 2481. |
[15] | (c) Blanco, L.; Helson, H. E.; Hirthammer, M.; Mestdagh, H.; Spyroudis, S.; Vollhardt, K. P. C. Angew. Chem., Int. Ed. 1987, 26, 1246. |
[16] | Pagano, J. K.; Xie, J.; Erickson, K. A.; Cope, S. K.; Scott, B. L.; Wu, R.; Waterman, R.; Morris, D. E.; Yang, P.; Gagliardi, L.; Kiplinger, J. L. Nature 2020, 578, 563. |
[17] | Parkhurst, R. R.; Swager, T. M. J. Am. Chem. Soc. 2012, 134, 15351. |
[18] | Luppino, S. P.; Swager, T. M. Synlett 2017, 28, 323. |
[19] | Jin, Z.; Teo, Y. C.; Teat, S. J.; Xia, Y. J. Am. Chem. Soc. 2017, 139, 15933. |
[20] | Jin, Z.; Yao, Z.-F.; Barker, K. P.; Pei, J.; Xia, Y. Angew. Chem., Int. Ed. 2019, 58, 2034. |
[21] | Wang, J.; Chu, M.; Fan, J. X.; Lau, T. K.; Ren, A. M.; Lu, X.; Miao, Q. J. Am. Chem. Soc. 2019, 141, 3589. |
[22] | (a) Stepien, M.; Gonka, E.; Zyla, M.; Sprutta, N. Chem. Rev. 2017, 117, 3479. |
[22] | (b) Ding, F.; Xia, D.; Sun, W.; Chen, W.; Yang, Y.; Lin, K.; Zhang, F.; Guo, X. Chem.-Eur. J. 2019, 25, 15106. |
[23] | Bunz, U. H. F.; Engelhart, J. U. Chem.-Eur. J. 2016, 22, 4680. |
[24] | Miao, Q. Synlett 2012, 23, 326. |
[25] | Miao, Q. Adv. Mater. 2014, 26, 5541. |
[26] | Biegger, P.; Schaffroth, M.; Patze, C.; Tverskoy, O.; Rominger, F.; Bunz, U. H. Chem.-Eur. J. 2015, 21, 7048. |
[27] | Biegger, P.; Schaffroth, M.; Tverskoy, O.; Rominger, F.; Bunz, U. H. Chem.-Eur. J. 2016, 22, 15896. |
[28] | Yang, S.; Liu, D.; Xu, X.; Miao, Q. Chem. Commun. 2015, 51, 4275. |
[29] | Yang, S.; Shan, B.; Xu, X.; Miao, Q. Chem.-Eur. J. 2016, 22, 6637. |
[30] | Yang, S.; Chua, M.; Miao, Q. J. Mater. Chem. C 2018, 6, 3651. |
[31] | Xia, Y.; Jin, Z.; Teo, Y.; Teat, S. Synlett 2018, 29, 2547. |
[32] | Mayer, P. J.; El Bakouri, O.; Holczbauer, T.; Samu, G. F.; Janaky, C.; Ottosson, H.; London, G. J. Org. Chem. 2020, 85, 5158. |
[33] | Roy, M.; Berezhnaia, V.; Villa, M.; Vanthuyne, N.; Giorgi, M.; Naubron, J. V.; Poyer, S.; Monnier, V.; Charles, L.; Carissan, Y.; Hagebaum-Reignier, D.; Rodriguez, J.; Gingras, M.; Coquerel, Y. Angew. Chem., Int. Ed. 2020, 59, 3264. |
[34] | Fang, L.; Lin, W. B.; Shen, Y.; Chen, C. F. Chin. J. Org. Chem. 2018, 38, 541. (in Chinese) |
[34] | (房蕾, 林伟彬, 沈赟, 陈传峰, 有机化学, 2018, 38, 541.) 443f4534-28a3-47fa-9e65-1da161ad2e62 |
[35] | Han, S. D.; Bond, A. D.; Disch, R. L.; Holmes, D.; Schulman, J. M.; Teat, S. J.; Vollhardt, K. P. C.; Whitener, G. D. Angew. Chem., Int. Ed. 2002, 41, 3223. |
[36] | Han, S. D.; Anderson, D. R.; Bond, A. D.; Chu, H. V.; Disch, R. L.; Holmes, D.; Schulman, J. M.; Teat, S. J.; Vollhardt, K. P. C.; Whitener, G. D. Angew. Chem., Int. Ed. 2002, 41, 3227. |
[37] | Pozo, I.; Guitian, E.; Perez, D.; Pena, D. Acc. Chem. Res. 2019, 52, 2472. |
[38] | Meric, I.; Han, M. Y.; Young, A. F.; Ozyilmaz, B.; Kim, P.; Shepard, K. L. Nat. Nanotechnol. 2008, 3, 654. |
[39] | Schlutter, F.; Nishiuchi, T.; Enkelmann, V.; Müllen, K. Angew. Chem., Int. Ed. 2014, 53, 1538. |
[40] | Miyoshi, H.; Nobusue, S.; Shimizu, A.; Tobe, Y. Chem. Soc. Rev. 2015, 44, 6560. |
[41] | Vollhardt, K.; Fonari, A.; R?der, J.; Shen, H.; Timofeeva, T. Synlett 2014, 25, 2429. |
[42] | Shen, Q.; Gao, H. Y.; Fuchs, H. Nano Today 2017, 13, 77. |
[43] | Sanchez-Sanchez, C.; Dienel, T.; Nicolai, A.; Kharche, N.; Liang, L.; Daniels, C.; Meunier, V.; Liu, J.; Feng, X.; Mullen, K.; Sanchez-Valencia, J. R.; Groning, O.; Ruffieux, P.; Fasel, R. Chem.-Eur. J. 2019, 25, 12074. |
[44] | Galeotti, G.; Di Giovannantonio, M.; Cupo, A.; Xing, S.; Lipton-Duffin, J.; Ebrahimi, M.; Vasseur, G.; Kierren, B.; Fagot-Revurat, Y.; Tristant, D.; Meunier, V.; Perepichka, D. F.; Rosei, F.; Contini, G. Nanoscale 2019, 11, 7682. |
[45] | Zhang, R.; Xia, B.; Xu, H.; Lin, N. Angew. Chem., Int. Ed. 2019, 58, 16485. |
[46] | Zhang, C.; Kazuma, E.; Kim, Y. Angew. Chem., Int. Ed. 2019, 58, 17736. |
[47] | Koch, M.; Gille, M.; Hecht, S.; Grill, L. Surf. Sci. 2018, 678, 194. |
[48] | Hudspeth, M. A.; Whitman, B. W.; Barone, V.; Peralta, J. E. ACS Nano 2010, 4, 4565. |
[49] | Parkhurst, R. R.; Swager, T. M. Top. Curr. Chem. 2014, 350, 141. |
[50] | Qian, W. Y.; Chuang, S. C.; Amador, R. B.; Jarrosson, T.; Sander, M.; Pieniazek, S.; Khan, S. I.; Rubin, Y. J. Am. Chem. Soc. 2003, 125, 2066. |
[51] | Bruns, D.; Miura, H.; Vollhardt, K. P. C.; Stanger, A. Org. Lett. 2003, 5, 549. |
[52] | Schulman, J. M.; Disch, R. L. J. Phys. Chem. A 2005, 109, 6947. |
[53] | Bharat; Bhola, J. M.; Bally, T.; Valente, A.; Cyranski, M. K.; Dobrzycki, L.; Spain, S. M.; Rempala, P.; Chin, M. R.; King, B. T. Angew. Chem., Int. Ed. 2010, 49, 399. |
[54] | Fukazawa, A.; Oshima, H.; Shiota, Y.; Takahashi, S.; Yoshizawa, K.; Yamaguchi, S. J. Am. Chem. Soc. 2013, 135, 1731. |
[55] | Fukazawa, A.; Oshima, H.; Shimizu, S.; Kobayashi, N.; Yamaguchi, S. J. Am. Chem. Soc. 2014, 136, 8738. |
/
〈 |
|
〉 |