研究论文

以氰甲基亚磷酸酯为含膦试剂的铜催化膦酰化异喹啉酮类化合物的高效合成

  • 赵苏艳 ,
  • 宫雪芹 ,
  • 甘子玉 ,
  • 颜秋莉 ,
  • 刘学良 ,
  • 杨道山
展开
  • a 吉林警察学院实验技术中心 长春 130117
    b 青岛科技大学化学与分子工程学院 山东青岛 266042
    c 曲阜师范大学化学与化工学院 山东曲阜 273165
    d 新乡医学院基础医学院 河南新乡 453003
* Corresponding authors. E-mail: ;

收稿日期: 2020-08-25

  修回日期: 2020-10-18

  网络出版日期: 2020-10-22

基金资助

山东省自然科学基金(ZR2016JL012); 青岛科技大学高科技人才资助项目.

Efficient Copper-Catalyzed Domino Synthesis of Phosphonated Isoquinolin-1(2H)-ones Using Cyanomethylphosphonates as Building Blocks

  • Suyan Zhao ,
  • Xueqin Gong ,
  • Ziyu Gan ,
  • Qiuli Yan ,
  • Xueliang Liu ,
  • Daoshan Yang
Expand
  • a Experimental Technology Center, Jilin Police College, Changchun 130117
    b College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042
    c School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165
    d Basic Medical College, Xinxiang Medical University, Xinxiang, Henan 453003

Received date: 2020-08-25

  Revised date: 2020-10-18

  Online published: 2020-10-22

Supported by

the Natural Science Foundation of Shandong Province(ZR2016JL012); the Scientific Research Foundation of Qingdao University of Science and Technology.()

摘要

报道了一种铜催化“一锅法”高效合成膦酰化异喹啉酮类化合物的新方法. 该反应是第一例基于铜催化Ullmann偶联策略以氰甲基亚磷酸酯为含膦试剂制备含膦取代氮杂环化合物的新方法.

本文引用格式

赵苏艳 , 宫雪芹 , 甘子玉 , 颜秋莉 , 刘学良 , 杨道山 . 以氰甲基亚磷酸酯为含膦试剂的铜催化膦酰化异喹啉酮类化合物的高效合成[J]. 有机化学, 2021 , 41(1) : 258 -266 . DOI: 10.6023/cjoc202008045

Abstract

An efficient and convenient copper-catalyzed cascade synthesis of C-4 phosphonated isoquinolin-1(2 H)-ones has been initially proposed. This is the first example for the construction of phosphine-containing heterocycles through copper-catalyzed Ullmann-type coupling reactions using cyanomethylphosphonates as the building blocks, and it will broaden the strategies of organophosphorus synthesis in the field of organic and pharmaceutical chemistry.

参考文献

[1]
(a) Ratnayake R.; Lacey E.; Tennant S.; Gill J.H.; Capon R.J. Chem. -Eur. J. 2007, 13, 1610.
[1]
(b) Billamboz M.; Bailly F.; Lion C.; Touati N.; Vezin H.; Calmels C.; Andreóla M.-L.; Christ F.; Debyser Z.; Cotelle P. J. Med. Chem. 2011, 54, 1812.
[1]
(c) Dickinson R.P.; Bell A.W.; Hitchcock C.A.; Narayana-Swami S.; Ray S.J.; Richardson K.; Troke P.F. Bioorg. Med. Chem. Lett. 1996, 6, 2031.
[1]
(d) Jatav V.; Mishra P.; Kashaw S.; Stables J.P. Eur. J. Med. Chem. 2008, 43, 135.
[1]
(e) Glushkov V.A.; Shklyaev Y.V. Chem. Heterocycl. Compd. 2001, 37, 66.
[2]
(a) Kashaw S.K.; Gupta V.; Kashaw V.; Mishra P.; Stables J.P.; Jain N.K. Med. Chem. Res. 2010, 19, 250.
[2]
(b) Wang Z.; He W.-M. Chin. J. Org. Chem. 2019, 39, 3594. (in Chinese)
[2]
( 王峥, 何卫民, 有机化学, 2019, 39, 3594.).
[2]
(c) Li X.-L.; Wang J.-Q.; Li L.; Yin Y.-W.; Ye L.-W. Acta Chim. Sinica 2016, 74, 49. (in Chinese)
[2]
( 李新玲, 王佳琪, 李龙, 尹应武, 叶龙武, 化学学报, 2016, 74, 49.).
[3]
(a) Horsman G.P.; Zechel D.L. Chem. Rev. 2017, 117, 5704.
[3]
(b) Gahungu M.; Arguelles-Arias A.; Fickers P.; Zervosen A.; Joris B.; Damblon C.; Luxen A. Bioorg. Med. Chem. 2013, 21, 4958.
[3]
(c) Tang W.; Zhang X. Chem. Rev. 2003, 103, 3029.
[3]
(d) Bhattacharya A.K.; Thyagarajan G. Chem. Rev. 1981, 81, 415.
[3]
(e) Kirumakki S.; Huang J.; Subbiah A.; Yao J.; Rowland A.; Smith B.; Mukherjee A.; Samarajeewa S.; Clearfield A. J. Mater. Chem. 2009, 19, 2593.
[3]
(f) Krylov S.; Kashemirov B.A.; Hilfinger J.M.; McKenna C.E. Mol. Pharmaceutics 2013, 10, 445.
[3]
(g) Qiao B.; Cao H.-Q.; Huang Y.-J.; Zhang Y.; Nie J.; Zhang F.-G.; Ma J.-A. Chin. J. Chem. 2018, 36, 809.
[4]
(a) Schlummer B.; Scholz U. Adv. Synth. Catal. 2004, 346, 1599.
[4]
(b) Hayashi T. Acc. Chem. Res. 2000, 33, 354.
[5]
(a) Zhuang R.; Xu J.; Cai Z.; Tang G.; Fang M.; Zhao Y. Org. Lett. 2011, 13, 2110.
[5]
(b) Lee H.; Yun J. Org. Lett. 2018, 20, 7961.
[5]
(c) Mehellou Y.; Rattan H.S.; Balzarini J. J. Med. Chem. 2018, 61, 2211.
[6]
Demmer C.S.; Krogsgaard-Larsen N.; Bunch L. Chem. Rev. 2011, 111, 7981.
[7]
Li B.; Yang J.; Xu H.; Song H.; Wang B. J. Org. Chem. 2015, 80, 12397.
[8]
(a) Shi W.; Li J.; Su D.; Wang X.; Zhang L.; Pan L.; Wu X.; Wu H. Angew. Chem., Int. Ed. 2019, 58, 1106.
[8]
(b) White J.D.; Laura Q.; Wang G. J. Org. Chem. 2007, 72, 1717.
[9]
Zhu W.; Zhang D.; Yang N.; Liu H. Chem. Commun. 2014, 50, 10634.
[10]
(a) Yang D.; An B.; Wei W.; Tian L.; Huang B.; Wang H. ACS Comb. Sci. 2015, 17, 113.
[10]
(b) Yan K.; Yang D.; Wei W.; Lu S.; Li G.; Zhao C.; Zhang Q.; Wang H. Org. Chem. Front. 2016, 3, 66.
[10]
(c) Gan Z.; Yan Q.; Li G.; Li Q.; Dou X.; Li G.-Y.; Yang D. Adv. Synth. Catal. 2019, 361, 4558.
[11]
(a) Bhunia S.; Pawar G.G.; Kumar S.V.; Jiang Y.; Ma D. Angew. Chem., Int. Ed. 2017, 56, 16136.
[11]
(b) Xu S.; Lu J.; Fu H. Chem. Commun. 2011, 47, 5596.
[11]
(c) Liu X.; Fu H.; Jiang Y.; Zhao Y. Angew. Chem., Int. Ed. 2009, 48, 348.
[11]
(d) Xu L.; Jiang Y.; Ma D. Org. Lett. 2012, 14, 1150.
[11]
(e) Ma D.; Cai Q. Acc. Chem. Res. 2008, 41, 1450.
[11]
(f) Lv X.; Bao W.L. J. Org. Chem. 2009, 74, 5618.
[11]
(g) Martìn R.; Rivero R.; Buchwald S.L. Angew. Chem., Int. Ed. 2006, 45, 7079.
[11]
(h) Liu Y.; Wan J.-P. Org. Biomol. Chem. 2011, 9, 6873.
[11]
(i) Verma A.K.; Kesharwani T.; Singh J.; Tandon V.; Larock R.C. Angew. Chem., Int. Ed. 2009, 48, 1138.
[11]
(j) Moessner C.; Bolm C. Org. Lett. 2005, 7, 2667.
[11]
(k) Cheng L.; Ge X.; Liu X.; Feng Y. Chin. J. Org. Chem. 2020, 40, 2008. (in Chinese)
[11]
( 成琳, 葛新, 刘学民, 冯云辉, 有机化学, 2020, 40, 2008.).
[11]
(l) Xie J.; Wang X.; Wu F.; Zhang J. Chin. J. Org. Chem. 2019, 39, 3026. (in Chinese)
[11]
( 谢建伟, 汪小创, 吴丰田, 张洁, 有机化学, 2019, 39, 3026.).
[12]
(a) Lu B.; Ma D. Org. Lett. 2006, 8, 6115.
[12]
(b) Xie X.; Cai G.; Ma D. Org. Lett. 2005, 7, 4693.
[12]
(c) Liu T.; Wang R.; Yang H.; Fu H. Chem. -Eur. J. 2011, 17, 6765.
[12]
(d) Li M.; Ning J.; Yu L.; Wen L. Chin. J. Org. Chem. 2016, 36, 2715. (in Chinese)
[12]
( 李明, 宁加彬, 于乐, 文丽荣, 有机化学, 2016, 36, 2715.).
[12]
(e) Zhao S.; Wang Z.-L. Chin. J. Org. Chem. 2016, 36, 862. (in Chinese)
[12]
( 赵苏艳, 王祖利, 有机化学, 2016, 36, 862.).
文章导航

/