综述与进展

烷基铝试剂与亲电试剂的偶联反应研究进展

  • 李清寒 ,
  • 罗瑞强 ,
  • 吴川 ,
  • 肖红柳 ,
  • 郭少鹏 ,
  • 张志豪 ,
  • 黄哲耀 ,
  • 周林
展开
  • 1 西南民族大学化学与环境保护工程学院 成都 610041

收稿日期: 2020-09-12

  修回日期: 2020-10-13

  网络出版日期: 2020-11-04

基金资助

西南民族大学中央高校基本科研业务费(2018NZD06); 四川省科技厅科技支撑计划(2015NZ0033)

Research Progress of Cross-Coupling Reactions of Alkylaluminums with Electrophiles Reagents

  • Qinghan Li ,
  • Ruiqiang Luo ,
  • Chuan Wu ,
  • Hongliu Xiao ,
  • Shaopeng Guo ,
  • Zhihao Zhang ,
  • Zheyao Huang ,
  • Lin Zhou
Expand
  • 1 College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041
* Corresponding author. E-mail:

Received date: 2020-09-12

  Revised date: 2020-10-13

  Online published: 2020-11-04

Supported by

Fundamental Research Funds for the Central Universities, the Southwest Minzu University(2018NZD06); Sichuan Provincial Department of Science and Technology Support Program(2015NZ0033)

摘要

烷基铝试剂因其反应活性高、毒性低、易于制备, 广泛应用于有机反应中. 过渡金属催化或无催化剂的条件下,有机铝试剂与亲电试剂的交叉偶联反应为多种化合物的合成提供了一种简便的方法, 并显示出比有机锂和有机镁试剂更高的官能团耐受性, 可以在硝基、酯基、羟基、氨基、腈基和内酯的存在下与羰基进行加成反应, 与亲电试剂进行偶联反应. 近年来许多有机铝试剂在交叉偶联反应中得到了较广泛的应用. 综述了近年来烷基铝试剂在交叉偶联反应中的研究成果, 涉及到各种反应体系.

本文引用格式

李清寒 , 罗瑞强 , 吴川 , 肖红柳 , 郭少鹏 , 张志豪 , 黄哲耀 , 周林 . 烷基铝试剂与亲电试剂的偶联反应研究进展[J]. 有机化学, 2021 , 41(4) : 1489 -1497 . DOI: 10.6023/cjoc202009029

Abstract

Alkyl aluminum compounds are widely applied in organic reactions because of their high reactivities, low toxicities, and ease of preparation. The cross-coupling reaction of an organoalane compounds with organic electrophiles using a transition-metal catalyst or catalyst-free provides a simple method to synthesize a large variety of compounds and shows a higher functional group tolerance than organolithium and magnesium, which allows for additions to aldehydes in the presence of nitro, ester, hydroxyl, amino, nitrile and lactone moieties. Therefore, many organoalane reagents have found the most applications in cross-coupling reactions in recent years. In this paper, the recent research results about the alkylaluminum reagents applied in cross-coupling reactions are reviewed, involving various reaction systems.

参考文献

[1]
Negishi, E-i.; Zeng, X.; Tan, Z.; Qian, M.; Hu, Q.; Huang, Z . Palladium- or Nickel-Catalyzed Cross-Coupling with Organometals Containing Zinc, Aluminum, and Zirconium: The Negishi Coupling. In Metal-Catalyzed Cross-Coupling Reactions, Vol 2, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004.
[2]
Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95,2457.
[3]
Kang, S.K.; Yamaguchi, T.; Kim, T.H.; Ho, P.S. J. Org. Chem. 1996, 61,9082.
[4]
Cherney, A.H.; Kadunce, N.T.; Reisman, S.E. Chem. Rev. 2015, 115,9587.
[5]
Herath, A.; Molteni, V.; Pan, S.F.; Loren, J. Org. Lett. 2018, 20,7429.
[6]
Zhu, F.; Wang, Z.X. J. Org. Chem. 2014, 79,4285.
[7]
Ranjan, Jana, R.; Pathak, T.P.; Sigman, M.S. Chem. Rev. 2011, 111,1417.
[8]
(a) For the synthesis of organoaluminum compounds, see: Knochel, P. Bl?mke, T.; Groll, K.; Chen, Y.-H. Modern Organoaluminum Reagents: Preparation, In Topics in Organometallic Chemistry, Vol. 41, Eds.: Woodward, S.; Dagorne, S., Springer, Berlin, 2013,pp.173~186.
[8]
(b) For cross-coupling reactions of organoaluminum compounds, see: Kolb, A. Zezschwitz, P. Modern Organoaluminum Reagents: Preparation, In Topics in Organometallic Chemistry, Vol. 41, Eds.: Woodward, S.; Dagorne, S., Springer, Berlin, 2013, pp.267~276.
[9]
Maruoka, K.; Yamamoto, H. Tetrahedron 1988, 44,5001.
[10]
Varenikov, A.; Mark Gandelman, M. J. Am. Chem. Soc. 2019, 141,10994.
[11]
Li, Q.H.; Shao, X.B.; Ding, Y.; Wen, C.; Zhao, Z.G. Curr. Org. Chem. 2018, 22,1523.
[12]
Li, Q.H.; Wang, J.H.; Wen, C.; Xin, J.; Cao, K.P.; Wu, K.; Liang, M. Chin. Chem. Lett. 2019,1830.
[13]
Li, Q.H.; Jiang, X.; Wu, K.; Luo, R.Q.; Zhang, Z.H.; Liang, M.; Huang, Z.Y. Mini-Rev. Org. Chem. 2020,.
[14]
Li, Q.H.; Shao, X.B.; Zhang, G.; Ding, Y.; Yang, X.J.; Chen, F. Chin. J. Org. Chem. 2018, 38,802. (in Chinese)
[14]
( 李清寒, 杓学蓓, 张刚, 丁勇, 杨学军, 陈峰, 有机化学, 2018, 38,802.)
[15]
Magano, J.; Monfette, S. ACS Catal. 2015, 5,3120.
[16]
Tarui, A.; Shinohara, S.; Sato, K.; Omote, M.; Ando, A. Org. Lett. 2016, 18,1128.
[17]
(a) Matsubara, K.; Yamamoto, H.; Miyazaki, S.; Inatomi, T.; Nonaka, K.; Koga, Y.; Yamada, Y.; Veiros, L.F.; Kirchner, K. Organometallics, 2017, 36,255.
[17]
(b) Gan, Y.; Zhang, N.H.; Huang, S.X.; Liu, Y.H. Chin. J. Chem. 2020, 38,1686.
[17]
(c) Wang, H.; Wang, A.W.; Xia, Z.Z.; Zhou, W.Y.; Sun, Z.H.; Quan, J.F.; He, M.Y. Chin. J. Org. Chem. 2020, 40,2099. (in Chinese)
[17]
( 王慧, 王安玮, 夏珍珍, 周维友, 孙中华, 钱俊峰, 何明阳, 有机化学, 2020, 40,2099.)
[17]
(d) He, S.J.; Pi, J.J.; Li, Y.; Lu, X.; Fu, Y. Acta Chim. Sinica 2018, 76,956. (in Chinese)
[17]
( 何世江, 皮静静, 李炎, 陆熹, 傅尧, 化学学报, 2018, 76,956.)
[18]
He, F.; Wang, Z.X. Tetrahedron 2017, 73,4450.
[19]
Wang, D.Y, Kawahata, M.; Yang, Z.K.; Miyamoto, K.; Komagawa, S.; Yamaguchi, K.; Wang, C.; Uchiyama, M. Nat. Commun. 2016, 7,12937.
[20]
Blum, J.; Gelman, D.; Baidossi, W.; Shakh, E.; Rosenfeld, A.; Aizenshtat, Z.; Wassermann, B.C.; Frick, M.; Heymer, B.; Schutte, S.; Wernik, S.; Schumann, H. J. Org. Chem. 1997, 62,8681.
[21]
Moria, Y.; Shigenob, C.; Luo, Y.; Chan, B.; Onodera, G.; Kimura, M. Synlett 2018, 29,742.
[22]
Liu, C.Y.; Wititsuwannakul, T.; Hsieh, C.H.; Tsai, C.Y.; Wang, T.H.; Ambre, R.; Chen, W.C.; Surawatanawong, P.; Ong, T.G. J. Chin. Chem. Soc. 2020, 67,376.
[23]
Naganawa, Y.; Guo, H.Q.; Sakamoto, K.; Nakajima, Y. ChemCatChem 2019, 11,3756.
[24]
Sato, F.; Kodama, H.; Sato, M. J. Organomet. Chem. 1978, 157,C30.
[25]
Shrestha, B.; Thapa, S.; Gurung, S.K.; Pike, R.A. S.; Giri, R. J. Org. Chem. 2016, 81,787.
[26]
Ne?as, D.; Kotora, M.; Císa?ová, I. Eur. J. Org. Chem. 2004, 6,1280.
[27]
Ne?as, D.; Drabina, P.; Sedlák, M.; Kotora, M. Tetrahedron Lett. 2007, 48,4539.
[28]
Chen, Q.; Ilies, L.; Yoshikai, N.; Nakamura, E. Org. Lett. 2011, 13,3232.
[29]
Chen, X.; Li, J.; Hao, X.; Goodhue, C.E.; Yu, J.Q. J. Am. Chem. Soc. 2006, 128,78.
[30]
Dai, H.X.; Stepan, A.F.; Plummer, M.S.; Zhang, Y.-H.; Yu, J.Q. J. Am. Chem. Soc. 2011, 133,7222.
[31]
Ilies, L.; Matsubara, T.; Ichikawa, S.; Asako, S.; Nakamura, E. J. Am. Chem. Soc. 2014, 136,13126.
[32]
Zhang, S.Y.; He, G.; Nack, W.A.; Zhao, Y.; Li, Q.; Chen, G. J. Am. Chem. Soc. 2013, 135,2124.
[33]
Shang, R.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2015, 137,7660.
[34]
Shang, R.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2016, 138,10132.
[35]
Su, B.; Cao, Z.C.; Shi, Z.J. Acc. Chem. Res. 2015, 48,886.
[36]
Liu, W.; Groves, J.T. Acc. Chem. Res. 2015, 48,1727.
[37]
Tasker, S.Z.; Standley, E.A.; Jamison, T.F. Nature 2014, 509,299.
[38]
Moselage, M.; Li, J.; Ackermann, L. ACS Catal. 2016, 6,498.
[39]
Gao, K.; Yoshikai, N. Acc. Chem. Res. 2014, 47,1208.
[40]
Liang, Y.; Jiao, N. Angew. Chem., nt. Ed. 2016, 55,4035.
[41]
(a) Hummel, J.R.; Ellman, J.A. J. Am. Chem. Soc., 2015, 137,490.
[41]
Gu, Z.Y.; Ji, S.J. Acta Chim. Sinica 2018, 76,347. (in Chinese)
[41]
( 顾正洋, 纪顺俊, 化学学报, 2018, 76,347.)
[42]
Chen, Q.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2011, 133,428.
[43]
Li, B.; Wu, Z.H.; Gu, Y.F.; Sun, C.L.; Wang, B.Q.; Shi, Z.J. Angew. Chem., nt. Ed. 2011, 50,1109.
[44]
Mei, R.H.; Ackermann, L. Adv. Synth. Catal. 2016, 358,2443.
[45]
Punji, B.; Song, W.F.; Shevchenko, G.A.; Ackermann, L. Chem.-Eur. J. 2013, 19,10605.
[46]
Gao, K.; Yoshikai, N. J. Am. Chem. Soc. 2013, 135,9279.
[47]
Wang, H.Q.; Zhang, S.; Wang, Z.Q.; He, M.H.; Xu, K. Org. Lett. 2016, 18,5628.
[48]
Xu, K.; Tan, Z.M.; Zhang, H.N.; Zhang, S. Synthesis 2017,3931.
[49]
Li, Q.; Li, Y.R.; Hu, W.P.; Hu, R.J.; Li, G.G.; Lu, H.J. Chem.-Eur. J. 2016, 22,12286.
[50]
Arisawa, M.; Torisawa, Y.; Nakagawa, M. Synthesis 1995,1371.
[51]
Arisawa, M.; Torisawa, Y.; Kawahara, M.; Yamanaka, M.; Nishida, A.; Nakagawa, M. J. Org. Chem., 1997, 62,4327.
[52]
(a) Amii, H.; Uneyama, K. Chem. Rev. 2009, 109,2119.
[52]
Ren, Z.W.; Ren, N.; Zhang, F.G.; Ma, J.A. Acta Chim. Sinica 2018, 76,940. (in Chinese)
[52]
( 任智雯, 任楠, 张发光, 马军安, 化学学报, 2018, 76,940.)
[53]
Gu, W.X.; Haneline, M.R.; Douvris, C.; Ozerov, O.V. J. Am. Chem. Soc. 2009, 131,11203.
[54]
(a) Dong, D.Q.; Li, G.H.; Chen, D.M.; Sun, Y.Y.; Han, J.J.; Wang, Z.L.; Xu, X.M.; Yu, X.Y. Chin. J. Org. Chem. 2020, 40,1766. (in Chinese)
[54]
( 董道青, 李光辉, 陈德茂, 孙媛媛, 韩晴晴, 王祖利, 徐鑫明, 于贤勇, 有机化学, 2020, 40,1766.)
[54]
(b) Li, Y.P.; Wang, M.; Jiang, X.F. Chin. J. Chem., 2020, 38,1521.
[55]
Hashimoto, S.; Kitagawa, Y.; Iemura, S.; Yamamote, H.; Nozaki, H. Tetrahedron Lett. 1976, 30,2615.
[56]
Ooi, T.; Uraguchi, D.; Kagoshima, N.; Maruoka, K. Tetrahedron Lett. 1997, 38,5679.
[57]
Terao, J.; Begum, S.A.; Shinohara, Y.; Tomita, M.; Naitoh, Y.; Kambe, N. Chem. Commun. 2007,855.
[58]
Terao, J.; Nakamura, M.; Kambe, N. Chem. Commun. 2009,6011.
[59]
Tanaka, H.; Shishido, Y. Bioorg. Med. Chem. Lett. 2007, 17,6079.
[60]
Shimada, H.; Kikuchi, S.; Haraguchi, K.; Tanaka, H. Carbohydr. Res. 2010, 345,2616.
[61]
Miyoshi, T.; Miyakawa, T.; Ueda, M.; Miyata, O. Angew. Chem., nt. Ed. 2011, 50,928.
[62]
Smith, D.A.; Banks, S.W. Phytochemistry 1986, 25,979.
[63]
Goel, A.; Kumar, A.; Raghuvanshi, A. Chem. Rev. 2013, 113,1614.
[64]
Feng, Z.G.; Bai, W.J.; Pettus, T.R. R. Angew. Chem., nt. Ed. 2015, 54,1864.
[65]
Nakamura, K.; Ohmori, K.; Suzuki, K. Chem. Commun. 2015, 51,7012.
[66]
(a) Shuai, Liu, S.; Li, J.; Wang, D.L.; Liu, F.; Liu, X.; Gao, Y.Y.; Jie, D.; Cheng, C. Chin. J. Chem. 2019, 37,570.
[66]
(b) Dong, K.; Liu, Q.; Wu, Li.Z. Acta Chim. Sinica 2020, 78,299. (in Chinese)
[66]
( 董奎, 刘强, 吴骊珠, 化学学报, 2020, 78,299.)
[66]
(c) Ma, X.D.; Zhang, G.Z. Chin. J. Chem. 2020, 38,1299.
[66]
(d) Chen, Y.F.; Zhao, H.; Cheng, D.P.; Li, X.N.; Xu, X.L. Chin. J. Org. Chem. 2020, 40,1297. (in Chinese)
[66]
( 陈跃峰, 赵赫, 程冬萍, 李小年, 许孝良, 有机化学, 2020, 40,1297.)
文章导航

/