铁催化酮羰基的硼化反应合成α-羟基硼酸酯
收稿日期: 2020-10-16
修回日期: 2020-10-30
网络出版日期: 2020-11-04
基金资助
国家自然科学基金(21673261); 国家自然科学基金(91745110); 国家自然科学基金(21872156); 江苏省自然科学基金(BK20190002); 江苏省自然科学基金(BK20181194); 中国科学院青年创新促进会(2018458)
Iron-Catalyzed Borylation of Ketones to α-Hydroxyboronates
Received date: 2020-10-16
Revised date: 2020-10-30
Online published: 2020-11-04
Supported by
the National Natural Science Foundation of China(21673261); the National Natural Science Foundation of China(91745110); the National Natural Science Foundation of China(21872156); the Natural Science Foundation of Jiangsu Province(BK20190002); the Natural Science Foundation of Jiangsu Province(BK20181194); and the Youth Innovation Promotion Association CAS(2018458)
朱庆 , 夏春谷 , 刘超 . 铁催化酮羰基的硼化反应合成α-羟基硼酸酯[J]. 有机化学, 2021 , 41(2) : 661 -668 . DOI: 10.6023/cjoc202010022
Fe-catalyzed borylation of ketones to access tertiary α-hydroxyboronates has been demonstrated. In this transformation, commercially available FeBr2 was used as the catalyst, alcohols have been added to accelerate the transformation and avoid the side reaction. Various aliphatic ketones with different functional groups have been converted into tertiary α-hydroxyboronates. This transformation showed a particular tolerance for ketones with steric hinderance, which was distinguished from the traditional Cu catalyst. A gram scale reaction was also available. The alcoholic C—O functionalizations based onα-hydroxyboronates have been realized to access tertiary alkyl boronic esters, gem-diborylalkanes and gem- silylborylalkanes.
Key words: iron catalyst; α-hydroxyboronates; borylation; ketones
[1] | Molander G.A.; Ellis N. Acc. Chem. Res. 2007, 40, 275. |
[2] | Darses S.; Genet J.P. Chem. Rev. 2008, 108, 288. |
[3] | Brooks W.L.; Sumerlin B.S. Chem Rev 2016, 116, 1375. |
[4] | Miyaura N.; Suzuki A. Chem. Rev. 1995, 95, 2457. |
[5] | Sandford C.; Aggarwal V.K. Chem. Commun. 2017, 53, 5481. |
[6] | Bull S.D.; Davidson M.G.; van den Elsen J.M.; Fossey J.S.; Jenkins A.T.; Jiang Y.B.; Kubo Y.; Marken F.; Sakurai K.; Zhao J.; James T.D. Acc. Chem. Res. 2013, 46, 312. |
[7] | Lesnikowski Z.J. J. Med. Chem. 2016, 59, 7738. |
[8] | Wang H.; Wang K.; Sun J.; Fang G.; Yao Q.; Wu Z. Chin. J. Org. Chem. 2018, 38, 1035. (in Chinese) |
[8] | 王浩, 王凯, 孙捷, 方桂迁, 姚庆强, 吴忠玉, 有机化学, 2018, 38, 1035.). |
[9] | Xu G.; Zhao Q.; Tang W. Chin. J. Org. Chem. 2014, 34, 1919. (in Chinese) |
[9] | 徐广庆, 赵庆, 汤文军, 有机化学, 2014, 34, 1919.). |
[10] | Yuan W.; Ma S. Org. Biomol. Chem. 2012, 10, 7266. |
[11] | Tai C.-C.; Yu M.-S.; Chen Y.-L.; Chuang W.-H.; Lin T.-H.; Yap G. P. A.; Ong T.-G. Chem. Commun. 2014, 50, 4344. |
[12] | Xue W.; Oestreich M. ACS Cent Sci. 2020, 6, 1070. |
[13] | Whyte A.; Torelli A.; Mirabi B.; Zhang A.; Lautens M. ACS Catal. 2020, 11578. |
[14] | Talbot F. J. T.; Dherbassy Q.; Manna S.; Shi C.; Zhang S.; Howell G.P.; Perry G. J. P.; Procter D.J. Angew. Chem. Int. Ed. 2020, 59, 2. |
[15] | Liu Q.; Tian B.; Tian P.; Tong X.; Lin G.-Q. Chin. J. Org. Chem. 2015, 35, 1. (in Chinese) |
[15] | 刘强, 田兵, 田平, 童晓峰, 林国强, 有机化学, 2015, 35, 1.). |
[16] | Zhang Y.; Wang M.; Cao P.; Liao J. Acta Chim. Sinica 2017, 75, 794. (in Chinese) |
[16] | 张涌灵, 王敏, 曹鹏, 廖建, 化学学报, 2017, 75, 794.). |
[17] | Wu J.Y.; Moreau B.; Ritter T. J. Am. Chem. Soc. 2009, 131, 12915. |
[18] | Haberberger M.; Enthaler S. Chem. Asian J. 2013, 8, 50. |
[19] | Obligacion J.V.; Chirik P.J. Org. Lett. 2013, 15, 2680. |
[20] | Zhang L.; Peng D.; Leng X.; Huang Z. Angew. Chem. Int. Ed. 2013, 52, 3676. |
[21] | Espinal-Viguri M.; Woof C.R.; Webster R.L. Chem. Eur. J. 2016, 22, 11605. |
[22] | Docherty J.H.; Peng J.; Dominey A.P.; Thomas S.P. Nat. Chem. 2017, 9, 595. |
[23] | Nakajima K.; Kato T.; Nishibayashi Y. Org. Lett. 2017, 19, 4323. |
[24] | Bai Y.; Cui C. Acta Chim. Sin. 2020, 78, 763. (in Chinese) |
[24] | 白云平, 崔春明, 化学学报, 2020, 78, 763). |
[25] | Yoshida H. ACS Catal. 2016, 6, 1799. |
[26] | Takaya J.; Iwasawa N. ACS Catal. 2012, 2, 1993. |
[27] | Sun Y.; Guan R.; Liu Z.; Wang Y. Chin. J. Org. Chem. 2020, 40, 899. (in Chinese) |
[27] | 孙越, 关瑞, 刘兆洪, 王也铭, 有机化学, 2020, 40, 899.). |
[28] | Chen J.; Guo J.; Lu Z. Chin. J. Chem. 2018, 36, 1075. |
[29] | Huang M.; Zhu S. Chem. J. Chin. Univ. 2020, 41, 1426. (in Chinese) |
[29] | 黄明耀, 朱守非, 高学校化学学报, 2020, 41, 1426.). |
[30] | He Z.; Hu Y.; Xia C.; Liu C. Org. Biomol. Chem. 2019, 17, 6099. |
[31] | Clark T.B. Asian J. Org. Chem. 2016, 5, 31. |
[32] | Laitar D.S.; Tsui E.Y.; Sadighi J.P. J. Am. Chem. Soc. 2006, 128, 11036. |
[33] | Zhao H.; Dang L.; Marder T.B.; Lin Z. J. Am. Chem. Soc. 2008, 130, 5586. |
[34] | McIntosh M.L.; Moore C.M.; Clark T.B. Org. Lett. 2010, 12, 1996. |
[35] | Molander G.A.; Wisniewski S.R. J. Am. Chem. Soc. 2012, 134, 16856. |
[36] | Kubota K.; Yamamoto E.; Ito H. J. Am. Chem. Soc. 2015, 137, 420. |
[37] | Kubota K.; Osaki S.; Jin M.; Ito H. Angew. Chem. Int. Ed. 2017, 56, 6646. |
[38] | Wang L.; Zhang T.; Sun W.; He Z.; Xia C.; Lan Y.; Liu C. J. Am. Chem. Soc. 2017, 139, 5257. |
[39] | Shi D.; Wang L.; Xia C.; Liu C. Angew. Chem. Int. Ed. 2018, 57, 10318. |
[40] | Wang L.; Sun W.; Liu C. Chin. J. Catal. 2018, 39, 1725. |
[41] | Tao L.; Guo X.; Li J.; Li R.; Lin Z.; Zhao W. J. Am. Chem. Soc. 2020, 142, 18118. |
[42] | Wang S.; Lokesh N.; Hioe J.; Gschwind R.M.; Konig B. Chem. Sci. 2019, 10, 4580. |
[43] | Li J.; Wang H.; Qiu Z.; Huang C.Y.; Li C.J. J. Am. Chem. Soc. 2020, 142, 13011. |
[44] | He Z.; Fan M.; Xu J.; Hu Y.; Wang L.; Wu X.; Xia C.; Liu C. Chin. J. Org. Chem. 2019, 39, 3438. (in Chinese) |
[44] | 何泽瑜, 范敏, 徐佳能, 胡越, 王露, 吴旭东, 夏春谷, 刘超, 有机化学, 2019, 39, 3438.). |
[45] | He Z.; Zhu Q.; Hu X.; Wang L.; Xia C.; Liu C. Org. Chem. Front. 2019, 6, 900. |
[46] | Zhu Q.; He Z.; Wang L.; Hu Y.; Xia C.; Liu C. Chem. Commun. 2019, 55, 11884. |
[47] | Hartwig J.F.; Huber S. J. Am. Chem. Soc. 1993, 115, 4908. |
[48] | Irvine G.J.; Lesley M.J.; Marder T.B.; Norman N.C.; Rice C.R.; Robins E.G.; Roper W.R.; Whittell G.R.; Wright L.J. Chem. Rev. 1998, 98, 2685. |
[49] | Aldridge S.; Coombs D.L. Coord. Chem. Rev. 2004, 248, 535. |
[50] | Braunschweig H.; Dewhurst R.D.; Schneider A. Chem. Rev. 2010, 110, 3924. |
[51] | Mkhalid I.A.; Barnard J.H.; Marder T.B.; Murphy J.M.; Hartwig J.F. Chem. Rev. 2010, 110, 890. |
[52] | Mazzacano T.J.; Mankad N.P. J. Am. Chem. Soc. 2013, 135, 17258. |
[53] | Kubota K.; Jin M.; Ito H. Organometallics 2016, 35, 1376. |
[54] | Sadhu K.M.; Matteson D.S. Organometallics 1985, 4, 1687. |
[55] | Leonori D.; Aggarwal V.K. Acc. Chem. Res. 2014, 47, 3174. |
[56] | Fawcett A.; Murtaza A.; Gregson C. H. U.; Aggarwal V.K. J. Am. Chem. Soc. 2019, 141, 4573. |
[57] | Fawcett A.; Biberger T.; Aggarwal V.K. Nat. Chem. 2019, 11, 117. |
/
〈 |
|
〉 |