研究论文

铁催化酮羰基的硼化反应合成α-羟基硼酸酯

  • 朱庆 ,
  • 夏春谷 ,
  • 刘超
展开
  • a 中国科学院兰州化学物理研究所 兰州 730000
    b 中国科学院大学 北京 100049
* Corresponding author. E-mail:

收稿日期: 2020-10-16

  修回日期: 2020-10-30

  网络出版日期: 2020-11-04

基金资助

国家自然科学基金(21673261); 国家自然科学基金(91745110); 国家自然科学基金(21872156); 江苏省自然科学基金(BK20190002); 江苏省自然科学基金(BK20181194); 中国科学院青年创新促进会(2018458)

Iron-Catalyzed Borylation of Ketones to α-Hydroxyboronates

  • Qing Zhu ,
  • Chungu Xia ,
  • Chao Liu
Expand
  • a State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000
    b University of Chinese Academy of Sciences, Beijing 100049

Received date: 2020-10-16

  Revised date: 2020-10-30

  Online published: 2020-11-04

Supported by

the National Natural Science Foundation of China(21673261); the National Natural Science Foundation of China(91745110); the National Natural Science Foundation of China(21872156); the Natural Science Foundation of Jiangsu Province(BK20190002); the Natural Science Foundation of Jiangsu Province(BK20181194); and the Youth Innovation Promotion Association CAS(2018458)

摘要

报道了一种铁催化烷基酮类化合物硼化合成三级α-羟基硼酸酯的反应, 使用了可商业购买的FeBr2作为催化剂, 加入醇作为添加剂来加速反应的进行, 同时避免副反应的发生. 通过该方法合成了一系列三级α-羟基硼酸酯化合物, 反应具有很好的底物兼容性以及官能团兼容性. 该铁催化剂对于大位阻的酮类化合物的硼化反应, 表现出优于铜催化的活性. 同时该反应可应用于克级规模的制备, 随后通过对三级α-羟基硼酸酯的C—O键进行官能化, 将所得的三级α-羟基硼酸酯转化为三级烷基硼酸酯以及偕二硼、偕硅硼类化合物.

本文引用格式

朱庆 , 夏春谷 , 刘超 . 铁催化酮羰基的硼化反应合成α-羟基硼酸酯[J]. 有机化学, 2021 , 41(2) : 661 -668 . DOI: 10.6023/cjoc202010022

Abstract

Fe-catalyzed borylation of ketones to access tertiary α-hydroxyboronates has been demonstrated. In this transformation, commercially available FeBr2 was used as the catalyst, alcohols have been added to accelerate the transformation and avoid the side reaction. Various aliphatic ketones with different functional groups have been converted into tertiary α-hydroxyboronates. This transformation showed a particular tolerance for ketones with steric hinderance, which was distinguished from the traditional Cu catalyst. A gram scale reaction was also available. The alcoholic C—O functionalizations based onα-hydroxyboronates have been realized to access tertiary alkyl boronic esters, gem-diborylalkanes and gem- silylborylalkanes.

参考文献

[1]
Molander G.A.; Ellis N. Acc. Chem. Res. 2007, 40, 275.
[2]
Darses S.; Genet J.P. Chem. Rev. 2008, 108, 288.
[3]
Brooks W.L.; Sumerlin B.S. Chem Rev 2016, 116, 1375.
[4]
Miyaura N.; Suzuki A. Chem. Rev. 1995, 95, 2457.
[5]
Sandford C.; Aggarwal V.K. Chem. Commun. 2017, 53, 5481.
[6]
Bull S.D.; Davidson M.G.; van den Elsen J.M.; Fossey J.S.; Jenkins A.T.; Jiang Y.B.; Kubo Y.; Marken F.; Sakurai K.; Zhao J.; James T.D. Acc. Chem. Res. 2013, 46, 312.
[7]
Lesnikowski Z.J. J. Med. Chem. 2016, 59, 7738.
[8]
Wang H.; Wang K.; Sun J.; Fang G.; Yao Q.; Wu Z. Chin. J. Org. Chem. 2018, 38, 1035. (in Chinese)
[8]
王浩, 王凯, 孙捷, 方桂迁, 姚庆强, 吴忠玉, 有机化学, 2018, 38, 1035.).
[9]
Xu G.; Zhao Q.; Tang W. Chin. J. Org. Chem. 2014, 34, 1919. (in Chinese)
[9]
徐广庆, 赵庆, 汤文军, 有机化学, 2014, 34, 1919.).
[10]
Yuan W.; Ma S. Org. Biomol. Chem. 2012, 10, 7266.
[11]
Tai C.-C.; Yu M.-S.; Chen Y.-L.; Chuang W.-H.; Lin T.-H.; Yap G. P. A.; Ong T.-G. Chem. Commun. 2014, 50, 4344.
[12]
Xue W.; Oestreich M. ACS Cent Sci. 2020, 6, 1070.
[13]
Whyte A.; Torelli A.; Mirabi B.; Zhang A.; Lautens M. ACS Catal. 2020, 11578.
[14]
Talbot F. J. T.; Dherbassy Q.; Manna S.; Shi C.; Zhang S.; Howell G.P.; Perry G. J. P.; Procter D.J. Angew. Chem. Int. Ed. 2020, 59, 2.
[15]
Liu Q.; Tian B.; Tian P.; Tong X.; Lin G.-Q. Chin. J. Org. Chem. 2015, 35, 1. (in Chinese)
[15]
刘强, 田兵, 田平, 童晓峰, 林国强, 有机化学, 2015, 35, 1.).
[16]
Zhang Y.; Wang M.; Cao P.; Liao J. Acta Chim. Sinica 2017, 75, 794. (in Chinese)
[16]
张涌灵, 王敏, 曹鹏, 廖建, 化学学报, 2017, 75, 794.).
[17]
Wu J.Y.; Moreau B.; Ritter T. J. Am. Chem. Soc. 2009, 131, 12915.
[18]
Haberberger M.; Enthaler S. Chem. Asian J. 2013, 8, 50.
[19]
Obligacion J.V.; Chirik P.J. Org. Lett. 2013, 15, 2680.
[20]
Zhang L.; Peng D.; Leng X.; Huang Z. Angew. Chem. Int. Ed. 2013, 52, 3676.
[21]
Espinal-Viguri M.; Woof C.R.; Webster R.L. Chem. Eur. J. 2016, 22, 11605.
[22]
Docherty J.H.; Peng J.; Dominey A.P.; Thomas S.P. Nat. Chem. 2017, 9, 595.
[23]
Nakajima K.; Kato T.; Nishibayashi Y. Org. Lett. 2017, 19, 4323.
[24]
Bai Y.; Cui C. Acta Chim. Sin. 2020, 78, 763. (in Chinese)
[24]
白云平, 崔春明, 化学学报, 2020, 78, 763).
[25]
Yoshida H. ACS Catal. 2016, 6, 1799.
[26]
Takaya J.; Iwasawa N. ACS Catal. 2012, 2, 1993.
[27]
Sun Y.; Guan R.; Liu Z.; Wang Y. Chin. J. Org. Chem. 2020, 40, 899. (in Chinese)
[27]
孙越, 关瑞, 刘兆洪, 王也铭, 有机化学, 2020, 40, 899.).
[28]
Chen J.; Guo J.; Lu Z. Chin. J. Chem. 2018, 36, 1075.
[29]
Huang M.; Zhu S. Chem. J. Chin. Univ. 2020, 41, 1426. (in Chinese)
[29]
黄明耀, 朱守非, 高学校化学学报, 2020, 41, 1426.).
[30]
He Z.; Hu Y.; Xia C.; Liu C. Org. Biomol. Chem. 2019, 17, 6099.
[31]
Clark T.B. Asian J. Org. Chem. 2016, 5, 31.
[32]
Laitar D.S.; Tsui E.Y.; Sadighi J.P. J. Am. Chem. Soc. 2006, 128, 11036.
[33]
Zhao H.; Dang L.; Marder T.B.; Lin Z. J. Am. Chem. Soc. 2008, 130, 5586.
[34]
McIntosh M.L.; Moore C.M.; Clark T.B. Org. Lett. 2010, 12, 1996.
[35]
Molander G.A.; Wisniewski S.R. J. Am. Chem. Soc. 2012, 134, 16856.
[36]
Kubota K.; Yamamoto E.; Ito H. J. Am. Chem. Soc. 2015, 137, 420.
[37]
Kubota K.; Osaki S.; Jin M.; Ito H. Angew. Chem. Int. Ed. 2017, 56, 6646.
[38]
Wang L.; Zhang T.; Sun W.; He Z.; Xia C.; Lan Y.; Liu C. J. Am. Chem. Soc. 2017, 139, 5257.
[39]
Shi D.; Wang L.; Xia C.; Liu C. Angew. Chem. Int. Ed. 2018, 57, 10318.
[40]
Wang L.; Sun W.; Liu C. Chin. J. Catal. 2018, 39, 1725.
[41]
Tao L.; Guo X.; Li J.; Li R.; Lin Z.; Zhao W. J. Am. Chem. Soc. 2020, 142, 18118.
[42]
Wang S.; Lokesh N.; Hioe J.; Gschwind R.M.; Konig B. Chem. Sci. 2019, 10, 4580.
[43]
Li J.; Wang H.; Qiu Z.; Huang C.Y.; Li C.J. J. Am. Chem. Soc. 2020, 142, 13011.
[44]
He Z.; Fan M.; Xu J.; Hu Y.; Wang L.; Wu X.; Xia C.; Liu C. Chin. J. Org. Chem. 2019, 39, 3438. (in Chinese)
[44]
何泽瑜, 范敏, 徐佳能, 胡越, 王露, 吴旭东, 夏春谷, 刘超, 有机化学, 2019, 39, 3438.).
[45]
He Z.; Zhu Q.; Hu X.; Wang L.; Xia C.; Liu C. Org. Chem. Front. 2019, 6, 900.
[46]
Zhu Q.; He Z.; Wang L.; Hu Y.; Xia C.; Liu C. Chem. Commun. 2019, 55, 11884.
[47]
Hartwig J.F.; Huber S. J. Am. Chem. Soc. 1993, 115, 4908.
[48]
Irvine G.J.; Lesley M.J.; Marder T.B.; Norman N.C.; Rice C.R.; Robins E.G.; Roper W.R.; Whittell G.R.; Wright L.J. Chem. Rev. 1998, 98, 2685.
[49]
Aldridge S.; Coombs D.L. Coord. Chem. Rev. 2004, 248, 535.
[50]
Braunschweig H.; Dewhurst R.D.; Schneider A. Chem. Rev. 2010, 110, 3924.
[51]
Mkhalid I.A.; Barnard J.H.; Marder T.B.; Murphy J.M.; Hartwig J.F. Chem. Rev. 2010, 110, 890.
[52]
Mazzacano T.J.; Mankad N.P. J. Am. Chem. Soc. 2013, 135, 17258.
[53]
Kubota K.; Jin M.; Ito H. Organometallics 2016, 35, 1376.
[54]
Sadhu K.M.; Matteson D.S. Organometallics 1985, 4, 1687.
[55]
Leonori D.; Aggarwal V.K. Acc. Chem. Res. 2014, 47, 3174.
[56]
Fawcett A.; Murtaza A.; Gregson C. H. U.; Aggarwal V.K. J. Am. Chem. Soc. 2019, 141, 4573.
[57]
Fawcett A.; Biberger T.; Aggarwal V.K. Nat. Chem. 2019, 11, 117.
文章导航

/