研究论文

铜催化羧酸与芳氨基甲酰氯的脱羧交叉偶联

  • 周敦 ,
  • 樊爱红 ,
  • 李翔 ,
  • 陈春霞 ,
  • 孙鹏 ,
  • 彭进松
展开
  • 1 东北林业大学化学化工与资源利用学院 哈尔滨 150040

收稿日期: 2020-07-30

  修回日期: 2020-10-20

  网络出版日期: 2020-11-19

基金资助

中央高校基本科研业务费专项资金(2572019CG06); 中央高校基本科研业务费专项资金(2572020DR07); 黑龙江省自然科学基金(LC2018003); 黑龙江省自然科学基金(B2017002); 高等学校学科创新引智计划(111计划)(B20088)

Copper-Catalyzed Decarboxylative Cross-Coupling of Carboxylic Acids and Arylcarbamoyl Chlorides

  • Dun Zhou ,
  • Aihong Fan ,
  • Xiang Li ,
  • Chunxia Chen ,
  • Peng Sun ,
  • Jinsong Peng
Expand
  • 1 College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040
* Corresponding authors. E-mail: ;

Received date: 2020-07-30

  Revised date: 2020-10-20

  Online published: 2020-11-19

Supported by

Fundamental Research Funds for the Central Universities(2572019CG06); Fundamental Research Funds for the Central Universities(2572020DR07); Natural Science Foundation of Heilongjiang Province(LC2018003); Natural Science Foundation of Heilongjiang Province(B2017002); Programme of Introducing Talents of Discipline to Universities (111 Project)(B20088)

摘要

报道了在不加碱的条件下, 无配体铜盐能有效催化羧酸和氨基甲酰氯脱羧交叉偶联反应, 以CuCl2为催化剂、苯为溶剂, 于120 ℃条件下反应48 h即可实现脱羧交叉偶联过程. 在此标准条件下, 该催化体系对官能团普适性较好, 以较高收率获得了各种酰胺, 产物经1H NMR、13C NMR和HRMS表征

本文引用格式

周敦 , 樊爱红 , 李翔 , 陈春霞 , 孙鹏 , 彭进松 . 铜催化羧酸与芳氨基甲酰氯的脱羧交叉偶联[J]. 有机化学, 2021 , 41(3) : 1146 -1152 . DOI: 10.6023/cjoc202007071

Abstract

A ligand-free copper-catalyzed decarboxylative cross-coupling reaction of carboxylic acids and carbamoyl chlorides in the absence of base was developed. With CuCl2 as the catalyst, the decarboxylative cross-coupling process could be realized in benzene at 120 ℃ in 48 h. Under the standard condition, the catalytic system had good functional group tolerance, and diverse amides were obtained in good to high yields. The structures of products were elucidated by 1H NMR, 13C NMR and HRMS spectra.

参考文献

[1]
(a) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606.
[1]
(b) de Figueiredo, R.M.; Suppo,, J.-S.; Campagne,, J.-M. Chem. Rev. 2016, 116, 12029.
[2]
Roy, S.; Roy, S.; Gribble, G. W. Tetrahedron 2012, 68, 9867.
[3]
Organotin reagents, see: (a) Balas, L.; Jousseaume, B.; Shin, H.; Verlhac, J.-B.; Wallian, F. Organometallics 1991, 10, 366.
[3]
(b) Jousseaume, B.; Kwon, H.; Verlhac, J.-B.; Denat, F.; Dubac, J. Synlett 1993,117.
[3]
(c) Murakami, M.; Hoshino, Y.; Ito, H.; Ito, Y. Chem. Lett. 1998,163.
[3]
(d) Hu, W.; Zheng, J.; Li, M.; Wu, W.; Liu, H.; Jiang, H. Chin. J. Chem. 2018, 36, 712.
[4]
Lemoucheux, L.; Rouden, J.; Lasne, M.-C. Tetrahedron Lett. 2000, 41, 9997.
[5]
Rieke, R. D.; Kim, S.-H. Tetrahedron Lett. 2012, 53, 3478.
[6]
Lysén, M.; Kelleher, S.; Begtrup, M.; Kristensen, J. L. J. Org. Chem. 2005, 70, 5342.
[7]
Duan, Y.-Z.; Deng, M.-Z. Synlett 2005,355.
[8]
Yasui, Y.; Tsuchida, S.; Miyabe, H.; Takemoto, Y. J. Org. Chem. 2007, 72, 5898.
[9]
Krishnamoorthy, R.; Lam, S. Q.; Manley, C. M.; Herr, R. J. J. Org. Chem. 2010, 75, 1251.
[10]
Kochi, T.; Urano, S.; Seki, H.; Mizushima, E.; Sato, M.; Kakiuchi, F. J. Am. Chem. Soc. 2009, 131, 2792.
[11]
(a) Matsuzono, M.; Fukuda, T.; Iwao, M. Tetrahedron Lett. 2001, 42, 7621.
[11]
(b) Chao, W.-R.; Yean, D.; Amin, K.; Green, C.; Jong, L. J. Med. Chem. 2007, 50, 3412.
[12]
Lemoucheux, L.; Seitz, T.; Rouden, J.; Lasne, M.-C. Org. Lett. 2004, 6, 3703.
[13]
Selected reviews, see: (a) Baudoin, O. Angew. Chem., Int. Ed. 2007, 46, 1373.
[13]
(b) Gooβen, L. J.; Rodriguez, N.; Gooβen, K. Angew. Chem.. Int. Ed. 2008, 47, 3100.
[13]
(c) Rodríguez, N.; Gooβen, L. J. Chem. Soc. Rev. 2011, 40, 5030.
[13]
(d) Dzik, W. I.; Lange, P. P.; Gooβen, L. J. Chem. Sci. 2012, 3, 2671.
[13]
(e) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Chem. Rev. 2017, 117, 8864.
[14]
Selected examples, see: (a) Myers, A. G.; Tanaka, D.; Mannion, M. R. J. Am. Chem. Soc. 2002, 124, 11250.
[14]
(b) Tanaka, D.; Romeril, S. P.; Myers, A. G. J. Am. Chem. Soc. 2005, 127, 10323.
[15]
Goo?en, L. J.; Deng, G.; Levy, L. M. Science 2006, 313, 662.
[16]
(a) Goo?en, L. J.; Linder, C.; Rodriguez, N.; Lange, P. P.; Fromm, A. Chem. Commun. 2009,7173.
[16]
(b) Cornella, J.; Sanchez, C.; Banawa, D.; Larrosa, I. Chem. Commun. 2009,7176.
[17]
(a) Cornella, J.; Rosillo-Lopez, M.; Larrosa, I. Adv. Synth. Catal. 2011, 353, 1359.
[17]
(b) Dupuy, S.; Lazreg, F.; Slawin, A. M. Z.; Cazin, C. S. J.; Nolan, S. P. Chem. Commun. 2011, 47, 5455.
[18]
Sun, Z.-M.; Zhao, P. Angew. Chem., Int. Ed. 2009, 48, 6726.
[19]
Shang, R.; Fu, Y.; Wang, Y.; Xu, Q.; Yu, H.-Z.; Liu, L. Angew. Chem., Int. Ed. 2009, 48, 9350.
[20]
(a) Jiao, J.; Zhang, X.-R.; Chang, N.-H.; Wang, J.; Wei, J.-F.; Shi, X.-Y.; Chen, Z.-G. J. Org. Chem. 2011, 76, 1180.
[20]
(b) Iwai, T.; Fujihara, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2010, 132, 9602.
[21]
Yamasaki, R.; Morita, K.; Iizumi, H.; Ito, A.; Fukuda, K.; Okamoto, I. Chem.-Eur. J. 2019, 25, 10118.
[22]
Allah, T. N.; ne Savourey, S.; Berthet, J.-C.; Nicolas, E.; Cantat, T. Angew. Chem., Int. Ed. 2019, 58, 10884.
[23]
Song, G.; Sun, G.; Tang, Y.; Mai, W. J. Chem. Res. 2013,630.
[24]
Zhou, Y.; Zhang, X.; Zhang, Y.; Ruan, L.; Zhang, J.; Zhang-Negrerie, D.; Du, Y. Org. Lett. 2017, 19, 150.
[25]
Zhang, Z.; Liu, Y.-H.; Zhang, X.; Wang, X.-C. Tetrahedron 2019, 75, 2763.
[26]
Bao, Y.-S.; Zhaorigetu, B.; Agula, B.; Baiyin, M.; Jia, M. J. Org. Chem. 2014, 79, 803.
[27]
Ackermann, L.; Vicente, R.; Hofmann, N. Org. Lett. 2009, 11, 4274.
[28]
Das, K. G.; Funke, P. T.; Bose, A. K. J. Am. Chem. Soc. 1964, 86, 3729.
文章导航

/