综述与进展

过渡金属催化的环丙烯聚合反应研究

  • 张泽鹏 ,
  • 郜云鹏 ,
  • 陈树峰 ,
  • 王剑波
展开
  • a 北京大学化学与分子工程学院 生物有机与分子工程教育部重点实验室 北京分子科学国家中心 北京 100871
    b 内蒙古大学化学化工学院 内蒙古自治区精细有机合成重点实验室 呼和浩特 010021

收稿日期: 2020-10-16

  修回日期: 2020-11-08

  网络出版日期: 2020-12-01

基金资助

国家自然科学基金(91956104); 北京市高等学校卓越青年科学家计划(BJJWZYJH01201910001001)

Transition-Metal-Catalyzed Polymerization of Cyclopropenes

  • Zepeng Zhang ,
  • Yunpeng Gao ,
  • Shufeng Chen ,
  • Jianbo Wang
Expand
  • a Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871
    b Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021
* Corresponding authors. E-mail: ;

Received date: 2020-10-16

  Revised date: 2020-11-08

  Online published: 2020-12-01

Supported by

National Natural Science Foundation of China(91956104); Beijing Outstanding Young Scientist Program(BJJWZYJH01201910001001)

摘要

环丙烯是一类最小的不饱和环状化合物, 其在有机化学中是十分重要的合成中间体, 同时在高分子聚合中也是一类独特的单体. 尽管环丙烯的研究大部分集中于有机化学领域, 近年来有关过渡金属催化的环丙烯聚合反应也逐渐引起了人们的兴趣. 综述了环丙烯聚合反应的研究进展, 主要包括加成聚合和开环复分解聚合(ROMP)两类聚合反应, 并从聚合物合成方法学的角度对于该领域的未来发展进行了展望.

本文引用格式

张泽鹏 , 郜云鹏 , 陈树峰 , 王剑波 . 过渡金属催化的环丙烯聚合反应研究[J]. 有机化学, 2021 , 41(5) : 1888 -1896 . DOI: 10.6023/cjoc202010024

Abstract

As the smallest unsaturated cyclic compounds in nature, cyclopropenes serve as important synthetic intermediates in organic chemistry as well as unique monomers in polymerization. While cyclopropenes are mostly explored in the domain of organic chemistry, the polymerization reaction of cyclopropenes has gradually attracted the attentions of chemists in recent years. The research progress of cyclopropene polymerization is reviewed, including addition polymerization and ring-opening metathesis polymerization (ROMP), and prospects for the future development of this field from the perspective of polymer synthesis methodolody.

参考文献

[1]
Stgrzel, M.; Mihan, S.; Mulhaupt, R. Chem. Rev. 2016, 116, 1398.
[2]
Chen, C. Nat. Rev. Chem. 2018, 2, 6.
[3]
Tan, C.; Chen, C. Angew. Chem., Int. Ed. 2019, 58, 7192.
[4]
Mu, H.; Pan, L.; Song, D.; Li, Y. Chem. Rev. 2015, 115, 12091.
[5]
Bermeshev, M. V.; Chapala, P. P. Prog. Polym. Sci. 2018, 84, 1.
[6]
Ma, S.; Cai, Y.; Tu, Y.; Guan, Y.; Chen, X. Polym. Chem. 2016, 7, 3520.
[7]
Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117.
[8]
Zhu, Z.-B.; Wei, Y.; Shi, M. Chem. Soc. Rev. 2011, 40, 5534.
[9]
Vicente, R. Synthesis 2016, 48, 2343.
[10]
Vicente, R. Chem. Rev. 2021, 121, 162.
[11]
Zhang, H.; Wang, K.; Wang, B.; Yi, H.; Hu, F.; Li, C.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 13234.
[12]
Zhang, H.; Wang, B.; Wang, K.; Xie, G.; Li, C.; Zhang, Y.; Wang, J. Chem. Commun. 2014, 50, 8050.
[13]
Zhang, H.; Wang, B.; Yi, H.; Zhang, Y.; Wang, J. Org. Lett. 2015, 17, 3322.
[14]
Wang, B.; Yi, H.; Zhang, H.; Sun, T.; Zhang, Y.; Wang, J. J. Org. Chem. 2018, 83, 1026.
[15]
Dian, L. Y.; Marek, I. Chem. Rev. 2018, 118, 8415.
[16]
Dian, L. Y.; Marek, I. ACS Catal. 2020, 10, 1289.
[17]
Cheng, Q. Q.; Deng, Y. M.; Lankelma, M.; Doyle, M. P. Chem. Soc. Rev. 2017, 46, 5425.
[18]
Li, P.; Zhang, X.; Shi, M. Chem. Commun. 2020, 56, 5457.
[19]
Wiberg, K. B.; Bartley, W. J. J. Am. Chem. Soc. 1960, 82, 6375.
[20]
Weigert, F. J.; Baird, R. L.; Shapley, J. R. J. Am. Chem. Soc. 1970, 92, 6630.
[21]
Binger, P.; McMeeking, J.; Schuchardt, U. Chem. Ber. 1980, 113, 2372.
[22]
Binger, P.; Schuchardt, U. Chem. Ber. 1981, 114, 1649.
[23]
Binger, P.; Büch, H. M.; Benn, R.; Mynott, R. Angew. Chem., Int. Ed. Engl. 1982, 21, 62.
[24]
Rush, S.; Reinmuth, A.; Risse, W. J. Am. Chem. Soc. 1996, 118, 12230.
[25]
Rush, S.; Reinmuth, A.; Risse, W. Macromolecules 1997, 30, 7375.
[26]
Shintani, R.; Iino, R.; Nozaki, K. J. Am. Chem. Soc. 2014, 136, 7849.
[27]
Singh, R.; Czekelius, C. R.; Schrock, R. Macromolecules 2006, 39, 1316.
[28]
Meena, J. S.; Thankachan, P. P. Comput. Theor. Chem. 2013, 1024, 1.
[29]
Singh, R.; Schrock, R. R. Macromolecules 2008, 41, 2990.
[30]
Flook, M. M.; Gerber, L. C. H.; Debelouchina, G. T.; Schrock, R. R. Macromolecules 2010, 43, 7515.
[31]
Binder, W. H.; Kurzhals, S.; Pulamagatta, B.; Decker, U.; Pawar, G. M.; Wang, D.; Kühnel, C.; Buchmeiser, M. R. Macromolecules 2008, 41, 8405.
[32]
Binder, W. H.; Pulamagatta, B.; Kurzhals, O. K. S.; Barqawi, H.; Tanner, S. Macromolecules 2009, 42, 9457.
[33]
Dumas, A.; Tarrieu, R.; Vives, T.; Roisnel, T.; Dorcet, V.; Basle?, O.; Mauduit, M. ACS Catal. 2018, 8, 3257.
[34]
Peng, J.-J.; Panda, B.; Satyanarayana, K.; Yang, H.-R.; Huang, S.-L.; Huang, M. J.; Chen, C.-h.; Lai, G.; Lai, Y.-Y.; Luh, T.-Y. Macromolecules 2019, 52, 7749.
[35]
Elling, B. R.; Su, J. K.; Xia, Y. Chem. Commun. 2016, 52, 9097.
[36]
Elling, B. R.; Xia, Y. J. Am. Chem. Soc. 2015, 137, 9922.
[37]
Elling, B. R.; Xia, Y. ACS Macro Lett. 2018, 7, 656.
[38]
Elling, B. R.; Su, J. K.; Xia, Y. ACS Macro Lett. 2020, 9, 180.
[39]
Elling, B. R.; Su, J. K.; Feist, J. D.; Xia, Y. Chem 2019, 5, 2691.
[40]
Su, J. K.; Jin, Z.; Xia, Y. Angew. Chem., Int. Ed. 2019, 58, 17771.
[41]
Su, J. K.; Lee, S. Y.; Elling, B. R.; Xia, Y. Macromolecules 2020, 53, 5833.
[42]
For a recent example of Grubbs-type cis-selective living ROMP, see: Song, J. A.; Peterson, G. I.; Bang, K. T.; Ahmed, T. S.; Sung, J. C.; Grubbs, R. H.; Choi, T. L. J. Am. Chem. Soc. 2020, 142, 10438.
文章导航

/