研究简报

NaNO2/Na2S2O8介导烯烃硝芳化反应合成硝基异喹啉二酮研究

  • 张玲玲 ,
  • 王知 ,
  • 吴剑 ,
  • 李小青
展开
  • a 江苏环保产业技术研究院股份公司 南京 210019
    b 浙江工业大学化学工程学院 杭州 310014

收稿日期: 2020-10-11

  修回日期: 2020-11-13

  网络出版日期: 2020-12-05

Synthesis of Nitro-Functionalized Isoquinolinediones via NaNO2/Na2S2O8-Mediated Arylnitration of Alkenes

  • Lingling Zhang ,
  • Zhi Wang ,
  • Jian Wu ,
  • Xiaoqing Li
Expand
  • a Jiangsu Academy of Environmental Industry and Technology Corp., Nanjing 210019
    b College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014
* Corresponding authors. E-mail: ;

Received date: 2020-10-11

  Revised date: 2020-11-13

  Online published: 2020-12-05

摘要

报道了一种利用N-丙烯酰基-N-甲基芳甲酰胺的自由基硝芳化合成硝基异喹啉二酮的新方法. 该方法以廉价易得的NaNO2/Na2S2O8为硝基自由基来源. 实验表明18-crown-6可以促进反应的进行. 与现有方法相比, 该方法可避免有毒NO2气体的使用, 具有环境友好、实验操作简便等优点.

本文引用格式

张玲玲 , 王知 , 吴剑 , 李小青 . NaNO2/Na2S2O8介导烯烃硝芳化反应合成硝基异喹啉二酮研究[J]. 有机化学, 2021 , 41(4) : 1734 -1738 . DOI: 10.6023/cjoc202010014

Abstract

A new method for the synthesis of nitro-functionalized isoquinolinediones by arylnitration of methacryloylbenzamides has been reported. Readily accessible NaNO2/Na2S2O8 was used as nitro radical precursor, and 18-crown-6 was used to promote the reaction. Compared with the existing method, this method is not only environmentally friendly but also easy to operate.

参考文献

[1]
(a) Barrett, A.G. M.; Graboski, G.G. Chem. Rev. 1986, 86,751.
[1]
(b) Ju, K.-S.; Parales, R.E. Microbiol. Mol. Biol. Rev. 2010, 74,250.
[1]
(c) Reddy, M.A.; Jain, N.; Yada, D.; Kishore, C.; Reddy, V.J.; Reddy, P.S.; Addlagatta, A.; Kalivendi, S.V.; Sreedhar, B. J. Med. Chem. 2011, 54,6751.
[2]
(a) Basavaiah, D.; Reddy, B.S.; Badsara, S.S. Chem. Rev. 2010, 110,5447.
[2]
(b) Lu, L.-Q.; Chen, J.-R.; Xiao, W.-J. Acc. Chem. Res. 2012, 45,1278.
[3]
Yan, L.; Yan, Y.; Chen, X.; Wang, Y. Chin. J. Org. Chem. 2020, 40,856. (in Chinese)
[3]
( 严丽君, 闫玉鑫, 陈雪冰, 王永超, 有机化学, 2020, 40,856.)
[4]
(a) Li, X.-Q.; Du, X.-H.; Xu, Z.-Y. Chin. J. Org. Chem. 2006, 26,1111. (in Chinese)
[4]
李小青, 杜晓华, 徐振元, 有机化学, 2006, 26, 1111.).
[4]
(b) Yuan, Y.-B.; Nie, J.; Wang, S.-J.; Zhang, Z.-B. Chin. J. Org. Chem. 2005, 25,394. (in Chinese)
[4]
袁余斌, 聂进, 王烁今, 张正波, 有机化学, 2005, 25,394.)
[5]
Cheng, H.; Lin, J.; Zhang, Y.; Cheng, B.; Wang, M.; Cheng, L.; Ma, J. Chin. J. Org. Chem. 2019, 39,318. (in Chinese)
[5]
( 陈辉成, 林锦龙, 张耀丰, 陈冰, 王敏, 有机化学, 2019, 39,318.)
[6]
Huang, J.; Ding, F.; Rojsitthisak, P.; He, F.-S.; Wu, J. Org. Chem. Front. 2020, 7,2873.
[7]
Wei, W.; Zhu, W.; Wu, Y.; Huang, Y.; Liang, H. Chin. J. Org. Chem. 2017, 37,1916. (in Chinese)
[7]
魏文廷, 朱文明, 吴益, 黄依铃, 梁洪泽, 有机化学, 2017, 37, 1916.)
[8]
(a) He, Y.; Zhao, N.; Qiu, L.; Zhang, X.; Fan, X. Org. Lett. 2016, 18,6054.
[8]
(b) Wang, T.; Jiang, Y.; Wang, Y.; Yan, R. Org. Biomol. Chem. 2018, 16,5232.
[8]
(c) Fan, Z.; Li, J.; Lu, H.; Wang, D.-Y.; Wang, C.; Uchiyama, M.; Zhang, A. Org. Lett. 2017, 19,3199.
[9]
(a) Maity, S.; Manna, S.; Rana, S.; Naveen, T.; Mallick, A.; Maiti, D. J. Am. Chem. Soc. 2013, 135,3355.
[9]
(b) Chatterjee, N.; Bhatt, D.; Goswami, A. Org. Biomol. Chem. 2015, 13,4828.
[9]
(c) Düsel, S.; K?nig, B. J. Org. Chem. 2018, 83,2802.
[10]
Li, X.; Zhuang, S.; Fang, X.; Liu, P.; Sun, P. Org. Biomol. Chem. 2017, 15,1821.
[11]
(a) Tsou, H.R.; Liu, X.; Birnberg, G.; Kaplan, J.; Otteng, M.; Tran, T.; Kutterer, K.; Tang, Z.; Suayan, R.; Zask, A.; Ravi, M.; Bretz, A.; Grillo, M.; McGinnis, J.P.; Rabindran, S.K.; Ayral-Kaloustian, S.; Mansour, T.S. J. Med. Chem. 2009, 52,2289.
[11]
(b) Billamboz, M.; Bailly, F.; Lion, C.; Touati, N.; Vezin, H.; Calmels, C.; Andréola, M.; Christ, F.; Debyser, Z.; Cotelle, P. J. Med. Chem. 2011, 54,1812.
[12]
(a) Li, X.; Xu, X.; Hu, P.; Xiao, X.; Zhou, C. J. Org. Chem. 2013, 78,7343.
[12]
(b) Yu, W.; Hu, P.; Fan, Y.; Yu, C.; Yan, X.; Li, X.; Xu, X. Org. Biomol. Chem. 2015, 13,3308. ?.
[13]
Li, Y.-M.; Wei, X.-H.; Li, X.-A., Yang, S-D. Chem. Commun. 2013, 49,11701.
文章导航

/