综述与进展

中环大环化合物合成研究进展

  • 张馨元 ,
  • 林礼 ,
  • 李静 ,
  • 段世妤 ,
  • 隆宇航 ,
  • 李加洪
展开
  • 1 西南交通大学生命科学与工程学院 成都 610031

收稿日期: 2020-10-18

  修回日期: 2020-11-30

  网络出版日期: 2020-12-10

基金资助

大学生创新创业(201910613081)

Recent Progress in the Synthesis of Medium-Sized Ring and Macrocyclic Compounds

  • Xinyuan Zhang ,
  • Li Lin ,
  • Jing Li ,
  • Shiyu Duan ,
  • Yuhang Long ,
  • Jiahong Li
Expand
  • 1 School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031
* Corresponding author. E-mail:

Received date: 2020-10-18

  Revised date: 2020-11-30

  Online published: 2020-12-10

Supported by

Student's Platform for Innovation and Entrepreneurship Training Program(201910613081)

摘要

中环(8~11元环)与大环(12元环及以上)是药物和天然产物中非常重要的结构并广泛应用于药物合成、有机化学以及其他领域. 科研工作者一直致力于开发更加简单、绿色、高效的合成中环大环的方法. 归纳并总结近五年来最新的通过扩环和环化反应方法合成中环大环化合物的研究现状和进展, 并对其未来的发展方向进行了总结和展望.

本文引用格式

张馨元 , 林礼 , 李静 , 段世妤 , 隆宇航 , 李加洪 . 中环大环化合物合成研究进展[J]. 有机化学, 2021 , 41(5) : 1878 -1887 . DOI: 10.6023/cjoc202010026

Abstract

Medium-sized rings (8~11 membered ring) and macrocycles (12-membered rings and above) are extremely important parts of drug and natural products. Meanwhile, they are widely used in the field of medicinal chemistry, organic chemistry and other fields. Developing simple, green and efficient protocol to synthesize medium-sized rings and macrocycles has attracted great interests from chemists in the recent years. The latest ring expansion/cyclization reaction in the synthesis of medium-sized ring and macrocyclic compounds in the past five years is reviewed, and the prospect of their future and development is also outlined.

参考文献

[1]
Hesse, M. Ring Enlargement in Organic Chemistry, Wiley-VCH, Weinheim, Germany, 1991.
[2]
(a) Clarke, A. K.; Unsworth, W. P. Chem. Sci. 2020, 11, 2876.
[2]
(b) Terrett, N. K. Drug Discovery Today: Technol. 2010, 7, e97.
[2]
(c) Hussain, A.; Yousuf, S. K.; Mukherjee, D. RSC Adv. 2014, 4, 43241.
[3]
Khan, A. R.; Parrish, J. C.; Fraser, M. E.; Smith, W. W.; Bartlett, P. A.; James, M. N. G. Biochemistry 1998, 37, 16839.
[4]
Kwon, Y.-U.; Kodadek, T. Cell Chem. Biol. 2007, 14, 671.
[5]
Maier, M. E. Angew. Chem., nt. Ed. 2000, 39, 2073.
[6]
Zhao, Y.; Lv, Y.; Xia, W. Chem. Rec. 2018, 19, 424.
[7]
Yet, L. Chem. Rev. 2000, 100, 2963.
[8]
Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746.
[9]
(a) Beck, B.; Larbig, G.; Mejat, B.; Magnin-Lachaux, M.; Picard, A.; Herdtweck, E.; D?mling, A. Org. Lett. 2003, 5, 1047.
[9]
(b) Leon, F.; Rivera, D. G.; Wessjohann, L. A. J. Org. Chem. 2008, 73, 1762.
[9]
(c) Abdelraheem, E. M. M.; Kurpiewska, K.; Kalinowska-T?u?cik, J.; D?mling, A. J. Org. Chem. 2016, 81, 8789.
[10]
Abdelraheem, E. M. M.; Madhavachary, R.; Rossetti, A.; Kurpiewska, K.; Kalinowska-T?u?cik, J.; Shaabani, S.; D?mling, A. Org. Lett. 2017, 19, 6176.
[11]
Madhavachary, R.; Abdelraheem, E. M. M.; Rossetti, A.; Twarda- Clapa, A.; Musielak, B.; Kurpiewska, K.; Kalinowska-T?u?cik, J.; Holak, T. A.; D?mling, A. Angew. Chem., nt. Ed. 2017, 56, 10725.
[12]
Zhou, B.; Zhang, Y.-Q.; Zhang, K.; Yang, M.-Y.; Chen, Y.-B.; Li, Y.; Peng, Q.; Zhu, S.-F.; Zhou, Q.-L.; Ye, L.-W. Nat. Commun. 2019, 10, 3234.
[13]
Lawer, A.; Rossi-Ashton, J. A.; Stephens, T. C.; Challis, B. J.; Epton, R. G.; Lynam, J. M.; Unsworth, W. P. Angew. Chem.,Int. Ed. 2019, 58, 13942.
[14]
Ni, R.; Mitsuda, N.; Kashiwagi, T.; Igawa, K.; Tomooka, K. Angew. Chem., nt. Ed. 2015, 54, 1190.
[15]
Mathiew, M.; Tan, J. K.; Chan, P. W. H. Angew. Chem., nt. Ed. 2018, 57, 14235.
[16]
Kitsiou, C.; Hindes, J. J.; I'Anson, P.; Jackson, P.; Wilson, T. C.; Daly, E. K.; Felstead, H. R.; Hearnshaw, P.; Unsworth, W. P. Angew. Chem., nt. Ed. 2015, 54, 15794.
[17]
Stephens, T. C.; Lodi, M.; Steer, A. M.; Lin, Y.; Gill, M. T.; Unsworth, W. P. Chem.-Eur. J. 2017, 23, 13314.
[18]
Stephens, T. C.; Lawer, A.; French, T.; Unsworth, W. P. Chem.-Eur. J. 2018, 24, 13947.
[19]
Costil, R.; Lefebvre, Q.; Clayden, J. Angew. Chem., nt. Ed. 2017, 56, 14602.
[20]
Zhao, W.; Qian, H.; Li, Z.; Sun, J. Angew. Chem., nt. Ed. 2015, 54, 10005.
[21]
Zhou, Y.; Wei, Y. L.; Rodriguez, J.; Coquerel, Y. Angew. Chem., nt. Ed. 2019, 58, 456.
[22]
Kasun, Z. A.; Geary, L. M.; Krische, M. J. Chem. Commun. 2014, 50, 7545.
[23]
Yang, L. C.; Rong, Z. Q.; Wang, Y. N.; Tan, Z. Y.; Wang, M.; Zhao, Y. Angew. Chem., nt. Ed. 2017, 56, 2927.
[24]
Wang, Y. N.; Yang, L. C.; Rong, Z. Q.; Liu, T. L.; Liu, R.; Zhao, Y. Angew. Chem., nt. Ed. 2018, 57, 1596.
[25]
Yang, Q.-Q.; Yin, X.; He, X.-L.; Du, W.; Chen, Y.-C. ACS Catal. 2019, 9, 1258.
[26]
Bauer, R. A.; Wenderski, T. A.; Tan, D. S. Nat. Chem. Biol. 2013, 9, 21.
[27]
Guney, T.; Wenderski, T. A.; Boudreau, M. W.; Tan, D. S. Chem.- Eur. J. 2018, 24, 13150.
[28]
Hall, J. E.; Matlock, J. V.; Ward, J. W.; Gray, K. V.; Clayden, J. Angew. Chem., nt. Ed. 2016, 55, 11153.
[29]
Li, Z. L.; Li, X. H.; Wang, N.; Yang, N. Y.; Liu, X. Y. Angew. Chem., nt. Ed. 2016, 55, 15100.
[30]
Li, L.; Li, Z.-L.; Wang, F.-L.; Guo, Z.; Cheng, Y.-F.; Wang, N.; Dong, X.-W.; Fang, C.; Liu, J.; Hou, C.; Tan, B.; Liu, X.-Y. Nat. Commun. 2016, 7, 13852.
[31]
Li, L.; Li, Z.-L.; Gu, Q.-S.; Wang, N.; Liu, X.-Y. Sci. Adv. 2017, 3, e1701487.
[32]
(a) Dowd, P.; Choi, S. C. J. Am. Chem. Soc. 1987, 109, 3493.
[32]
(b) Beckwith, A. L. J.; O'Shea, D. M.; Westwood, S. W. J. Am. Chem. Soc. 1988, 110, 2565.
[33]
Hierold, J.; Lupton, D. W. Org. Lett. 2012, 14, 3412.
[34]
Deguchi, M.; Fujiya, A.; Yamaguchi, E.; Tada, N.; Uno, B.; Itoh, A. RSC Adv. 2018, 8, 15825.
[35]
Wang, M.; Li, M.; Yang, S.; Xue, X.-S.; Wu, X.; Zhu, C. Nat. Commun. 2020, 11, 672.
[36]
Wang, N.; Gu, Q.-S.; Li, Z.-L.; Li, Z.; Guo, Y.-L.; Guo, Z.; Liu, X.-Y. Angew. Chem. 2018, 57, 14225.
[37]
Wang, N.; Wang, J.; Guo, Y. L.; Li, L.; Sun, Y.; Li, Z.; Zhang, H. X.; Guo, Z.; Li, Z. L.; Liu, X. Y. Chem. Commun. 2018, 54, 8885.
[38]
Zhao, K.; Yamashita, K.; Carpenter, J. E.; Sherwood, T. C.; Ewing, W. R.; Cheng, P. T. W.; Knowles, R. R. J. Am. Chem. Soc. 2019, 141, 8752.
[39]
Xu, Z.; Huang, Z.; Li, Y.; Kuniyil, R.; Zhang, C.; Ackermann, L.; Ruan, Z. Green Chem. 2020, 22, 1099.
文章导航

/