研究论文

三乙胺促进的环丙烯酮和α-卤代异羟肟酸酯的环化反应合成多取代6H-1,3-噁嗪-6-酮

  • 刘思展 ,
  • 崔明月 ,
  • 王博文 ,
  • 胡春梅 ,
  • 郑莹莹 ,
  • 李晶 ,
  • 徐学涛 ,
  • 王震 ,
  • 王少华
展开
  • a 兰州大学药学院 兰州 730000
    b 五邑大学生物科技与大健康学院 广东江门 529020

收稿日期: 2020-10-30

  修回日期: 2020-12-10

  网络出版日期: 2020-12-24

基金资助

国家自然科学基金(21472077); 国家自然科学基金(21772071); 广东省教育厅(2017KTSCX185); 广东省教育厅(2017KSYS010); 广东省教育厅(2019KZDXM035)

Triethyl Amine-Promoted Cyclization Reaction between Cyclopropenone and α-Halogenated Hydroxamate for the Synthesis of Polysubstituted 6H-1,3-Oxazin-6-one

  • Sizhan Liu ,
  • Mingyue Cui ,
  • Bowen Wang ,
  • Chunmei Hu ,
  • Yingying Zheng ,
  • Jing Li ,
  • Xuetao Xu ,
  • Zhen Wang ,
  • Shaohua Wang
Expand
  • a School of Pharmacy, Lanzhou University, Lanzhou 730000
    b School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020
* Corresponding authors. E-mail: ;

Received date: 2020-10-30

  Revised date: 2020-12-10

  Online published: 2020-12-24

Supported by

National Natural Science Foundation of China(21472077); National Natural Science Foundation of China(21772071); Department of Education of Guangdong Province(2017KTSCX185); Department of Education of Guangdong Province(2017KSYS010); Department of Education of Guangdong Province(2019KZDXM035)

摘要

利用环丙烯酮同时具有亲核性、亲电性以及易发生开环反应的特点, 实现了三乙胺促进的环丙烯酮和α-卤代异羟肟酸酯类化合物的[3+3]环加成反应, 快速构筑了6H-1,3-噁嗪-6-酮骨架, 为噁嗪酮类化合物的合成提供了新的思路. 该反应在无金属和温和条件下显示出良好的收率和官能团耐受性, 同时适合克级规模制备.

本文引用格式

刘思展 , 崔明月 , 王博文 , 胡春梅 , 郑莹莹 , 李晶 , 徐学涛 , 王震 , 王少华 . 三乙胺促进的环丙烯酮和α-卤代异羟肟酸酯的环化反应合成多取代6H-1,3-噁嗪-6-酮[J]. 有机化学, 2021 , 41(4) : 1622 -1630 . DOI: 10.6023/cjoc202010041

Abstract

A triethyl amine-promoted cyclization reaction between cyclopropenone and α-halohydroxamate has been developed to give an alternative synthetic strategy for the construction of 6H-1,3-oxazin-6-one skeleton. The reaction shows good yield and functional group tolerance under metal-free and mild conditions, and it is suitable for gram-scale preparation.

参考文献

[1]
(a) Kopelman, P.; Bryson, A.; Hickling, R.; Rissanen, A.; Rossner, S.; Toubro, S.; Valensi, P. Int. J. Obes. 2007, 31,494.
[1]
(b) Yamada, Y.; Kato, T.; Ogino, H.; Ashina, S.; Kato, K. Horm. Metab. Res. 2008, 40,539.
[2]
Stein, R.L.; Strimpler, A.M.; Viscarello, B.R.; Wildonger, R.A.; Mauger, R.C.; Trainor, D.A. Biochemistry 1987, 26,4126.
[3]
Hays, S.J.; Caprathe, B.W.; Gilmore, J.L.; Amin, N.; Emmerling, M.R.; Michael, W.; Nadimpalli, R.; Nath, R.; Raser, K.J.; Stafford, D.; Watson, D.; Wang, K.; Jaen, J.C. J. Med. Chem. 1998, 41 1060.
[4]
Fenton, G.; Newton, C.G.; Wyman, B.M.; Bagge, P.; Dron, D.I.; Riddell, D.; Jones, G.D. J. Med. Chem. 1989, 32,265.
[5]
Jarvest, R.L.; Parratt, M.J.; Debouck, C.M.; Gorniak, J.G.; John Jennings, L.; Serafinowska, H.T.; Strickler, J.E. Bioorg. Med. Chem. Lett. 1996, 6,2463.
[6]
(a) Wu, X.-F.; Schranck, J.; Neumann, H.; Beller, M. Chem.-Eur. J. 2011, 17,12246.
[6]
(b) Liu, Q.; Chen, P.; Liu, G. ACS Catal. 2013, 3,178.
[6]
(c) Li, W.; Wu, X.-F. J. Org. Chem. 2014, 79,10410.
[6]
(d) Zhang, C.; Li, S.; Bure?, F.; Lee, R.; Ye, X.; Jiang, Z. ACS Catal. 2016, 6,6853.
[6]
(e) Song, P.; Yu, P.; Lin, J.-S.; Li, Y.; Yang, N.-Y.; Liu, X.-Y. Org. Lett. 2017, 19,1330.
[6]
(f) Niu, B.; Jiang, B.; Yu, L.-Z.; Shi, M. Org. Chem. Front. 2018, 5,1267.
[6]
(g) Mohan, R.D.; Jose, A. Asian J. Chem. 2018, 30,1075.
[6]
(h) Matsuda, T.; Yamanaka, K.; Tabata, Y.; Shiomi, T. Tetrahedron Lett. 2018, 59,1458.
[7]
Chen, M.; Ren, Z.H.; Wang, Y.Y.; Guan, Z.H. Angew. Chem., Int. Ed. 2013, 52,14196.
[8]
Karad, S.N.; Chung, W.K.; Liu, R.S. Chem. Sci. 2015, 6,5964.
[9]
Jurberg, I.D.; Davies, H.M. L. Org. Lett. 2017, 19,5158.
[10]
Lang, M.; Wang, J. Org. Chem. Front. 2019, 6,1367.
[11]
Breslow, R.; Haynie, R.; Mirra, J. J. Am. Chem. Soc. 1959, 81,247.
[12]
(a) Komatsu, K.; Kitagawa, T. Chem. Rev. 2003, 103,1371.
[12]
(b) Potts, K.T.; Baum, J.S. Chem. Rev. 1974, 74,189.
[12]
(c) Prasad, Raiguru, B.; Nayak, S.; Ranjan, Mishra, D.; Das, T.; Mohapatra, S.; Priyadarsini, Mishra, N. Asian J. Org. Chem. 2020, 9,1088.
[13]
(a) Matsumoto, K.; Ikemi, Y.; Hashimoto, S.; Lee, H.S.; Okamoto, Y. J. Org. Chem. 1986, 51,3729.
[13]
(b) Jacobs, C.A.; Dailey, W.P. J. Org. Chem. 1995, 60,7747.
[13]
(c) Cordes, M.H. J.; de Gala, S.; Berson, J.A. J. Am. Chem. Soc. 1994, 116,11161.
[14]
(a) K?rner, O.; Gleiter, R.; Rominger, F. Synthesis 2009,3259.
[14]
(b) Rivero, A.R.; Fernández, I.; Ramírez de Arellano, C.; Sierra, M.A. J. Org. Chem. 2015, 80,1207.
[14]
(c) Wallbaum, J.; Jones, P.G.; Werz, D.B. J. Org. Chem. 2015, 80,3730.
[14]
(d) Li, L.-H.; Jiang, Y.; Hao, J.; Wei, Y.; Shi, M. Adv. Synth. Catal. 2017, 359,3304.
[15]
(a) Matsuda, T.; Sakurai, Y. Eur. J. Org. Chem. 2013, 2013,4219.
[15]
(b) Yu, S.; Li, X. Org. Lett. 2014, 16,1220.
[15]
(c) Matsuda, T.; Sakurai, Y. Org. Chem. 2014, 79,2739.
[15]
(d) Xie, F.; Yu, S.; Qi, Z.; Li, X. Angew. Chem., Int. Ed. 2016, 55,15351.
[15]
(e) Kong, L.; Zhou, X.; Xu, Y.; Li, X. Org. Lett. 2017, 19,3644.
[15]
(f) Li, X.; Han, C.; Yao, H.; Lin, A. Org. Lett. 2017, 19,778.
[15]
(g) Ren, J.-T.; Wang, J.-X.; Tian, H.; Xu, J.-L.; Hu, H.; Aslam, M.; Sun, M. Org. Lett. 2018, 20,6636.
[15]
(h) Shan, L.; Wu, G.; Liu, M.; Gao, W.; Ding, J.; Huang, X.; Wu, H. Org. Chem. Front. 2018, 5,1651.
[15]
(i) Liu, Y.; Tian, Y.; Su, K.; Wang, P.; Guo, X.; Chen, B. Org. Chem. Front. 2019, 6,3973.
[16]
(a) Kondo, T.; Taniguchi, R.; Kimura, Y. Synlett 2018, 29,717.
[16]
(b) Haito, A.; Chatani, N. Chem. Commun. 2019, 55,5740.
[16]
(c) Bai, D.; Yu, Y.; Guo, H.; Chang, J.; Li, X. Angew. Chem., Int. Ed. 2020, 59,2740.
[16]
(d) Nanda, T.; Ravikumar, P.C. Org. Lett. 2020, 22,1368.
[16]
(e) Xing, H.; Chen, J.; Shi, Y.; Huang, T.; Hai, L.; Wu, Y. Org. Chem. Front. 2020, 7,672.
[16]
(f) Zhou, P.; Yang, W.-T.; Rahman, A.U.; Li, G.; Jiang, B. J. Org. Chem. 2020, 85,360.
[16]
(g) Chen, J.; Tang, B.; Liu, X.; Lv, G.; Shi, Y.; Huang, T.; Xing, H.; Guo, X.; Hai, L.; Wu, Y. Org. Chem. Front. 2020, 7,2944.
[17]
(a) Vanos, C.; Lambert, T. Angew. Chem., Int. Ed. 2011, 50,12222.
[17]
(b) Wei, Y.; Zhao, W.-T.; Yang, Y.-L.; Zhang, Z.; Shi, M. ChemCatChem 2015, 7,3340.
[17]
(c) Shih, H.-W.; Prescher, J.A. J. Am. Chem. Soc. 2015, 137,10036.
[17]
(d) Aly, A.A.; Ramadan, M.; Al-Aziz, M.A.; Fathy, H.M.; Br?se, S.; Brown, A.B.; Nieger, M. J. Chem. Res. 2016, 40,637.
[17]
(e) Cunha, S.; Serafim, J.C.; de Santana, L.L. B.; Damasceno, F.; Correia, J.T. M.; Santos, A.O.; Oliveira, M.; Ribeiro, J.; Amparo, J.; Costa, S.L. J. Heterocycl. Chem. 2017, 54,3700.
[17]
(f) El-Sheref, E.M. J. Sulfur Chem. 2017, 38,625.
[17]
(g) Li, X.; Han, C.; Yao, H.; Lin, A. Org. Lett. 2017, 19,778.
[17]
(h) Xu, J.; Cao, J.; Fang, C.; Lu, T.; Du, D. Org. Chem. Front. 2017, 4,560.
[17]
(i) Reitel, K.; Kriis, K.; J?rving, I.; Kanger, T. Chem. Heterocycl. Compd. 2018, 54,929.
[17]
(j) Matsuda, T.; Tabata, Y.; Suzuki, H. New J. Chem. 2018, 42,19178.
[17]
(k) Wu, J.; Gao, W.-X.; Huang, X.-B.; Zhou, Y.-B.; Liu, M.-C.; Wu, H.-Y. Org. Lett. 2020, 22,5555.
[17]
(l) Liu, S.-W.; Yuan, C.; Jiang, X.-F.; Wang, X.-X.; Cui, H.-L. Asian J. Org. Chem. 2020, 9,82.
[17]
(m) Yang, Y.-F.; Huang, X.-B.; Gao, W.-X.; Zhou, Y.-B.; Liu, M.-C.; Wu, H.-Y. Org. Biomol. Chem. 2020, 18,5822.
[17]
(n) Jamshaid, F.; Kondakal, V.V. R.; Newman, C.D.; Dobson, R.; Jo?o, H.; Rice, C.R.; Mwansa, J.M.; Thapa, B.; Hemming, K. Tetrahedron 2020,131570.
[18]
(a) Zhu, B.Z.; Shao, B.; Li, F.; Liu, Y.X.; Huang, C.H. Acta Chim. Sinica 2015, 73,765. (in Chinese)
[18]
( 朱本占, 邵波, 李锋, 刘玉祥, 黄春华, 化学学报, 2015, 73,765.)
[18]
(b) Gu, Y.Y.; Lü, X.Q.; Ma, X.D.; Zhang, H.J.; Ji, Y.Y.; Ding, W.J.; Shen, L. Chin. J. Org. Chem. 2020, 40,95. (in Chinese)
[18]
( 顾依钰, 吕晓庆, 马晓东, 张浩健, 嵇媛媛, 丁婉婧, 沈立, 有机化学, 2020, 40,95.)
[19]
Peart, P.A.; Tovar, J.D. J. Org. Chem. 2010, 75,5689.
[20]
Jeffrey, C.S.; Barnes, K.L.; Eickhoff, J.A.; Carson, C.R. J. Am. Chem. Soc. 2011, 133,7688.
[21]
(a) Foucaud, A.; Bakouetila, M. Synthesis 1987,854.
[21]
(b) Li, C.; Jiang, K.; Ouyang, Q.; Liu, T.-Y.; Chen, Y.-C. Org. Lett. 2016, 18,2738.
文章导航

/