研究简报

一锅两步法合成1,4-二芳基取代-1,3-丁二烯类化合物

  • 梁静茹 ,
  • 王冰莹 ,
  • 黄成尹 ,
  • 叶晓君 ,
  • 温燕梅
展开
  • 1 广东海洋大学化学与环境学院 广东湛江 524088
† 共同第一作者

收稿日期: 2020-10-07

  修回日期: 2020-12-16

  网络出版日期: 2021-02-07

基金资助

广东海洋大学创新强校工程(230419054); 广东海洋大学大学生创新训练(580520106); 广东海洋大学学位与研究生教育改革研究(521002082)

Synthesis of Symmetrical (E,E)-1,4-Diaryl-1,3-butadienes by One-Pot Method

  • Jingru Liang ,
  • Bingying Wang ,
  • Chengyin Huang ,
  • Xiaojun Ye ,
  • Yanmei Wen
Expand
  • 1 Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, Guangdong 524088
* Corresponding author. E-mail:
† These authors contributed equally to this work

Received date: 2020-10-07

  Revised date: 2020-12-16

  Online published: 2021-02-07

Supported by

Project of Enhancing School with Innovation of Guangdong Ocean University(230419054); College Students Innovation Program of Guangdong Ocean University(580520106); Graduate Education Innovation Program of Guangdong Ocean University(521002082)

摘要

1,3-共轭烯烃不仅是有机合成不可或缺的原料或中间体, 许多聚合物、天然产物和具有生理活性化合物的核心骨架都含有1,3-丁二烯结构单元. 简便而有效的1,3-共轭烯烃合成方法一直是化学家们感兴趣的研究课题, 在已有共轭烯烃的合成方法中, 钯催化烯基卤与端烯的Heck交叉偶联反应占据了主要地位. 最近, 简单化合物的“一锅法”串联反应构建碳碳键具有操作及反应后处理简单、原子经济性高等优点而备受关注. 以价廉易得端炔和联硼酸频哪醇酯为原料, 在碱催化下进行硼氢化反应生成烯基硼酸频哪醇酯, 这一中间体无需分离纯化, 在Pd(OAc)2和碱的作用下实现一锅串联反应得到目标产物1,4-二芳基取代-1,3-丁二烯化合物, 所有化合物的结构用1H NMR和13C NMR进行表征, 该一锅串联法合成途径简捷, 反应条件温和, 为共轭烯烃化合物合成提供了简便的途径.

本文引用格式

梁静茹 , 王冰莹 , 黄成尹 , 叶晓君 , 温燕梅 . 一锅两步法合成1,4-二芳基取代-1,3-丁二烯类化合物[J]. 有机化学, 2021 , 41(5) : 2116 -2120 . DOI: 10.6023/cjoc202010008

Abstract

1,3-Conjugated olefins are very useful synthetic intermediates. Furthermore, 1,3-diene moiety is an important unit often found in many polymers, natural products and biologically active compounds. For these reasons, the design and synthesis of compounds containing a diene moiety have received considerable attention in organic synthesis and have been extensively studied. Among these methods, the Heck cross-coupling reaction between alkenyl halide and terminal alkene under palladium catalysis has become a powerful tool for the synthesis of dienes. Recently, many research groups have focused on “one-pot method” cascade reactions to form carbon-carbon bond due to not only their convenient and simple operation, but also their high atomic economy. Using terminal alkyne and bis(pinacolato)diboron as starting materials and NaOMe as the base, alkenyl borates were formed, and a series of 1,3-butadienes were directly synthesized via palladium-catalyzed homocoupling reaction of alkenyl borates. The structures of all the compounds were confirmed by 1H NMR and 13C NMR. This one pot method is simple and mild, which provides a simple way for the synthesis of a series of 1,3-butadienes.

参考文献

[1]
(a) Ramamoorthy, G.; Acevedo, C. M.; Alvira, E.; Lipton, M. A. Tetrahedron: Asymmetry 2008, 19, 2546.
[1]
(b) Davis, R.; Kumar, N. S. S.; Abraham, S.; Suresh, C. H.; Rath, N. P.; Tamaoki, N.; Das, S. J. Phys. Chem. C 2008, 112, 2137.
[1]
(c) Xi, Z. F.; Zhang, W. X. Synlett 2008,2557.
[1]
(d) Amans, D.; Bellosta, V.; Cossy, J. Chem.-Eur. J. 2009, 15, 3457.
[1]
(e) Huang, J. M.; Dong, Y.; Wang, X. X.; Luo, H. C. Chem. Commun. 2010, 46, 1035.
[1]
(f) Zhou P.; Jiang H. F.; Huang L. B.; Li X. W. Chem. Commun. 2011, 47, 1003.
[1]
(g) Wen, Y. M.; Huang, L. B.; Jiang, H. F. J. Org. Chem. 2012, 77, 5418.
[1]
(h) Li, W. B.; Zhang, J. L. Org. Lett. 2014, 16, 162.
[1]
(i) Jiang, B.; Zhao, M.; Li, S. S.; Xu, Y. H.; Loh, T. P. Angew. Chem., Int. Ed. 2018, 57, 555.
[2]
(a) Lemhadri, M.; Battace, A.; Berthiol, F.; Zair, T.; Doucet, H.; Santelli, M. Synthesis 2008,1142.
[2]
(b) Blackwell, D. T.; Galloway, W. R. J. D.; Spring, D. R. Synlett 2011,2140.
[2]
(g) Yang, Q.; Chai, H.; Liu, T.; Yu, Z. Tetrahedron Lett. 2013, 54, 6485.
[3]
(a) Phillips, A. M. F.; Pombeiro, A. J. L. ChemCatChem 2018, 10, 3354.
[3]
(b) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
[3]
(c) Varun, B. V.; Dhineshkumar, J.; Bettadapur, K. R.; Siddaraju, Y.; Alagiri, K.; Prabhu, K. R. Tetrahedron Lett. 2017, 58, 803.
[3]
(d) Wu, Y. N.; Wang, J.; Mao, F.; Kwong, F. Y. Chem.-Asian J. 2014, 9, 26.
[3]
(e) Ashenhurst, J. A. Chem. Soc. Rev. 2010, 39, 540.
[3]
(f) Lei, A. W.; Liu, W.; Liu, C.; Chen, M. Dalton Trans. 2010, 39, 10352.
[3]
(g) Bras, J. L.; Muzart, J. Chem. Rev. 2011, 111, 1170.
[3]
(h) Liu, C.; Yuan, J. W.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. W. Chem. Rev. 2015, 115, 12138.
[3]
(i) Murakami, K.; Yamada, S.; Kaneda, T.; Itami, K. Chem. Rev. 2017, 117, 9302.
[3]
(j) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
[3]
(k) Wang, C. S.; Dixneuf, P. H.; Soule?, J. F. Chem. Rev. 2018, 118, 7532.
[3]
(l) Li, X.; Ouyang, W., Nie, J.; Ji, S.; Chen, Q.; Huo, Y. ChemCatChem 2020, 12, 2358.
[4]
(a) Wilklow-Marnell, M.; Li, B.; Zhou, T.; Krogh-Jespersen, K.; Brennessel, W. W.; Emge, T. J.; Goldman, A. S.; Jones, W. D. J. Am. Chem. Soc. 2017, 139, 8977.
[4]
(b) Sun, Q.; Cai, L.; Ding, Y.; Xie, L.; Zhang, C.; Tan, Q.; Xu, W. Angew. Chem., Intl. Ed. 2015, 54, 4549.
[4]
(c) Wen, Y.; Xie, J.; Deng, C.; Wu, Y. Synlett 2015, 26, 1755.
[5]
Denmark, S. E.; Tymonko, S. A. J. Am. Chem. Soc. 2005, 127, 8004.
[6]
(a) Jiang, H. F.; Qiao, C. L.; Liu, W. B. Chem.-Eur. J. 2010, 16, 10968.
[6]
(b) Zhou P.; Jiang H. F.; Huang L. B. Chem. Commun. 2011, 47, 1003.
[7]
Wen, Y. M.; Huang, L. B.; Jiang, H. F. J. Org. Chem. 2012, 77, 5418.
[8]
Itami, K.; Ushiogi, Y.; Nokami, T.; Ohashi, Y.; Yoshida, J. Org. Lett. 2004, 6, 3695.
[9]
Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A. J. Am. Chem. Soc. 1985, 107, 972.
[10]
Dhital, R. N.; Sakurai, H. Asian J. Org. Chem. 2014, 3, 668.
[11]
(a) Nagao, K.; Ohmiya, H.; Sawamura, M. Org. Lett. 2015, 17, 1304.
[11]
(b) Verma, A.; Snead, R. F.; Dai, Y.; Slebodnick, C.; Yang, Y.; Yu, H.; Yao, F.; Santos, W. L. Angew. Chem., Int. Ed. 2017, 56, 5111.
[11]
(c) Kojima, C.; Lee, K.-H.; Lin, Z.; Yamashita, M. J. Am. Chem. Soc. 2016, 138, 6662.
[11]
(d) Morinaga, A.; Nagao, K.; Ohmiya, H.; Sawamura, M. Angew. Chem., Int. Ed. 2015, 54, 15859.
[11]
(e) Miralles, N.; Alam, R.; Szabó, K. J.; Fernández, E. Angew. Chem., Int. Ed. 2016, 55, 4303.
[11]
(f) Hong, S. B.; Zhang, W.; Liu, M. Y.; Yao, Z. J.; Deng, W. Tetrahedron Lett. 2016, 57, 1.
[12]
Deng, C. M.; Ma, Y. F.; Wen, Y. M. ChemistrySelect 2018, 3, 1202.
[13]
Zheng, C.; Wang, D.; Stahl, S. S. J. Am. Chem. Soc. 2012, 134, 16496.
[14]
Thiel, N. O.; Kemper, S.; Teichert, J. F. Tetrahedron 2017, 73, 5023.
[15]
Hintermann, L.; Schmitz, M.; Chen, Y. Adv. Synth. Catal. 2010, 352, 2411.
[16]
Al-Jawaheri, Y.; Kimber, M. Org. Lett. 2016, 18, 3502.
[17]
Zhuang, X.; Chen, J.-Y.; Yang, Z.; Jia, M.; Wu, C.; Liao, R.-Z.; Tung, C.-H.; Wang, W. Organometallics 2019, 38, 3752.
[18]
Parrish, J. P.; Jung, Y. C.; Floyd, R. J.; Jung, K. W. Tetrahedron Lett. 2002, 43, 7899.
[19]
Rodriguez, J. G.; Díaz-Oliva, C. Tetrahedron 2009, 65, 2512.
[20]
Ting, C.-M.; Hsu, Y.-L.; Liu, R.-S. Chem. Commun. 2012, 48, 6577.
文章导航

/