研究论文

乙酸铵催化的酚与多聚甲醛的甲酰化反应研究

  • 李倩 ,
  • 杨丽 ,
  • 刘伟 ,
  • 王天昀 ,
  • 朱月杰 ,
  • 杜正银
展开
  • 1 西北师范大学化学化工学院 兰州 730070

收稿日期: 2020-11-09

  修回日期: 2020-12-26

  网络出版日期: 2021-02-07

基金资助

国家自然科学基金(21262028); 国家自然科学基金(21762039); 甘肃省自然科学基金(20JR5RA521)

Formylation of Phenols and Paraformaldehyde Catalyzed by Ammonium Acetate

  • Qian Li ,
  • Li Yang ,
  • Wei Liu ,
  • Tianyun Wang ,
  • Yuejie Zhu ,
  • Zhengyin Du
Expand
  • 1 College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070
* Corresponding author. E-mail:

Received date: 2020-11-09

  Revised date: 2020-12-26

  Online published: 2021-02-07

Supported by

National Natural Science Foundation of China(21262028); National Natural Science Foundation of China(21762039); Natural Science Foundation of Gansu Province(20JR5RA521)

摘要

在乙酸铵作为催化剂的条件下, 萘酚和多聚甲醛在醋酸溶液中反应, 成功合成了一系列羟基萘甲醛, 收率最高达86%. 将该方法应用于苯酚及取代苯酚的甲酰化反应, 以42%~58%的中等收率得到水杨醛类化合物. 根据反应结果提出了可能的作用机理. 该方法不使用任何金属试剂, 具有反应条件温和、操作简单及成本低廉的特点.

本文引用格式

李倩 , 杨丽 , 刘伟 , 王天昀 , 朱月杰 , 杜正银 . 乙酸铵催化的酚与多聚甲醛的甲酰化反应研究[J]. 有机化学, 2021 , 41(5) : 2038 -2044 . DOI: 10.6023/cjoc202011014

Abstract

The reaction of naphthol and paraformaldehyde in acetic acid solution with ammonium acetate as a catalyst resulted in the synthesis of a series of hydroxynaphthalenes in yields of up to 86%. Several phenols were also transformed into the corresponding salicylaldehydes under the same reaction conditions in moderate yields of 42%~58%. A rational mechanism was also proposed based on the facts of experimental observations. This metal-free process has the advantages of mild reaction conditions, simple operation and low cost.

参考文献

[1]
Vojacek, S.; Beese, K.; Alhalabi, Z.; Swyter, S.; Bodtke, A.; Schulzke, C.; Jung, M.; Sippl, W.; Link, A. Arch. Pharm. Chem. Life Sci. 2017, 350, e1700097.
[2]
Lu, C.; Hu, J. H.; Wang, Z. C.; Xie, S. H.; Pan, T. T.; Huang, L.; Li, X. S. Med. Chem. Commun. 2018, 9, 1862.
[3]
Xiao, J. M.; Feng, L.; Zhou, L. S.; Gao, H. Z.; Zhang, Y. L.; Yang, K. W. Eur. J. Med. Chem. 2013, 59, 150.
[4]
Dobashi, Y.; Ohkatsu, Y. Polym. Degrad. Stab. 2008, 93, 436.
[5]
Deb, M. L.; Pegu, C. D.; Borpatra, P. J.; Baruah, P. K. RSC Adv. 2016, 6, 40552.
[6]
Goswami, S.; Maity, S.; Das, A. K.; Maity, A. C. Tetrahedron Lett. 2013, 54, 6631.
[7]
Su, H. Y.; Huang, W. W.; Yang, Z. Y.; Lin, H.; Lin, H. K. J. Inclusion Phenom. Macrocyclic Chem. 2012, 72, 221.
[8]
Long, F. J. Fluoresc. 2017, 27, 1331.
[9]
Qin, J. C.; Fan, L.; Li, T. R.; Yang, Z. Y. Synth. Met. 2015, 199, 179.
[10]
Ugi, I. Adv. Synth. Catal. 1997, 339, 499.
[11]
Terret, N. K.; Gardener, M.; Gordon, D. W.; Kobylecki, R. J.; Steele, J. Tetrahedron 1995, 51, 8135.
[12]
(a) Duff, J. C. J. Chem. Soc. 1941,547.
[12]
(b) Duff, J. C. J. Chem. Soc. 1944,276.
[13]
Reimer, K.; Tiemann, F. Chem. Ber. 1876, 9, 824.
[14]
Hofsl?kken, N. U.; Skatteb?l, L. Acta Chem. Scand. 1999, 53, 258.
[15]
Ma, K. R.; Huang, Z. Q.; Tang, X. D.; Zhang, P. C.; Shi, G. L. Chem. World 1987, 2, 58. (in Chinese).
[15]
(马克荣, 黄治清, 唐宪达, 张鹏程, 石桂林, 化学世界, 1987, 2, 58.)
[16]
Xia, S. P.; Lv, Y. M.; Cheng, X. Y. Sichuan Chem. Ind. 2004, 7, 10. (in Chinese).
[16]
(夏士朋, 吕云妹, 成新燕, 四川化工, 2004, 7, 10.)
[17]
Zhao, S. F.; Chen, N. Y.; Mei, S. H.; Sun, J. G.; Hao, W. D. J. Wuhan Univ. Technol. 2006, 28, 73. (in Chinese).
[17]
(赵胜芳, 陈年友, 梅水华, 孙国建, 郝卫东, 武汉理工大学学报, 2006, 28, 73.)
[18]
Yue, X. L.; Wang, Z. Q.; Li, C. R.; Yang, Z. Y. Tetrahedron Lett. 2017, 58, 4532.
[19]
Balali, E.; Shameli, A.; Naeimi, H.; Ghanbari, M. M. Orient. J. Chem. 2013, 29, 1611.
[20]
Naeimi, H.; Zakerzadeh, E. New J. Chem. 2018, 42, 4590.
[21]
(a) Wu, H.; Wu, J. C.; Du, Z. Chin. J. Org. Chem. 2017, 37, 1127. (in Chinese).
[21]
(吴慧, 武俊成, 杜正银, 有机化学, 2017, 37, 1127.)
[21]
(b) Hu, B.; Zhang, Y. M.; Wang, T. Y.; Du, Z. J. Liaocheng Univ. (Nat. Sci.) 2020, 33, 67. (in Chinese).
[21]
(胡贝, 张源民, 王天昀, 杜正银, 聊城大学学报(自然科学版), 2020, 33, 67.)
[21]
(c) Zhang, W.; Dong, T.; Wang, T.; Du, Z. J. Liaocheng Univ. (Nat. Sci.) 2019, 32, 35. (in Chinese).
[21]
(张文莹, 董涛生, 王天昀, 杜正银, 聊城大学学报(自然科学版), 2019, 32, 35.)
[22]
(a) Stover, J. S.; Shi, J.; Jin, W.; Vogt, P. K.; Boger, D. W. J. Am. Chem. Soc. 2009, 131, 3342.
[22]
(b) Aridoss, G.; Laali, K. K. J. Org. Chem. 2011, 76, 8088.
[23]
Ou, W.; Huang, P. Sci. China: Chem. 2020, 63, 11.
[24]
Yue, X.-L.; Wang, Z.-Q.; Li, C.-R.; Yang, Z.-Y. Tetrahedron Lett. 2017, 58, 4532.
[25]
Zhao, Q. G.; Wei, Q. C.; Xuan, M. D. Org. Lett. 2010, 12, 2202.
[26]
Vojacek, S.; Beese, K.; Alhalabi, Z.; Swyter, S.; Bodtke, A.; Schulzke, C.; Jung, M.; Sippl, W.; Link, A. Arch. Pharm. Chem. Life Sci. 2017, 350, e1700097.
[27]
Burton, H. J. Chem. Soc. 1945,280.
[28]
Muhammad, A.; David, O. M.; Paris, E. G. J. Chem. Soc., erkin Trans. 1 2002,1470.
[29]
Andrew, C.; Benniston; Jér?me, F. Tetrahedron Lett. 2008, 49, 4292.
[30]
Musgrave, O. C.; Skoyles, D. J. Chem. Res. 2006, 2006, 456.
[31]
Asthanaa, M.; Syiemliehb, I.; Kumarc, A.; Lalb, R. A. Inorg. Chim. Acta 2020, 502, 119286.
[32]
Li, L. J.; Fu, B.; Qiao, Y.; Wang, C.; Huang, Y. Y.; Liu, C. C.; Tian, C.; Du, J. L. Inorg. Chim. Acta 2014, 419, 135.
[33]
Zysman-Colman, E.; Arias, K.; Siegel, J. S. Can. J. Chem. 2009, 87, 440.
[34]
Balali, E.; Shameli, A.; Naeimi, H.; Ghanbari, M. Orient. J. Chem. 2013, 29, 1611.
[35]
Antúnez, D. J. B.; Greenhalgh, M. D.; Fallan, C.; Slawin, A. M. Z.; Smith, A. D. Org. Biomol. Chem. 2016, 14, 7268.
[36]
Horton, D. A.; Bourne, G. T.; Coughlan, J.; Kaiser, S. M.; Jacobs, C. M.; Jones, A.; Ruhmann, A.; Turnerb, J. Y.; Smythe, M. L. Org. Biomol. Chem. 2008, 6, 1386.
[37]
Knuutlnen, J. S.; Kolehmainen, E. T. J. Chem. Eng. Data 1983, 28, 139.
[38]
Casiraghi, G.; Casnati, G.; Puglia, G.; Sartori, G. Synthesis 1980,124.
文章导航

/