HBr催化α-溴代甲基酮类化合物的全脱溴反应研究
收稿日期: 2020-10-06
修回日期: 2020-12-14
网络出版日期: 2021-02-22
基金资助
新疆维吾尔自治区2017年自治区“天山青年计划”(2017Q026)
Study on the Debromination of α-Bromomethyl Ketones Catalyzed by HBr
Received date: 2020-10-06
Revised date: 2020-12-14
Online published: 2021-02-22
Supported by
Xinjiang Uygur Autonomous Region 2017 Tianshan Youth Program(2017Q026)
报道了HBr催化下以水为氢源的α-溴代甲基酮类化合物的脱溴化反应. 以α-溴代甲基酮类化合物为原料, 四氢呋喃为溶剂, α-溴代甲基酮与质量分数5%的氢溴酸的物质的量比为1.0:0.2时, 在180 ℃下反应5~14 h, 分离产率高达94% [高效液相(HPLC)产率96%]的脱溴产物. 该方法无金属催化剂参与, 催化剂价格低廉, 所有产物均经1H NMR和13C NMR结构确证.
关键词: α-溴代甲基酮类化合物; HBr; 脱溴
郑梦霞 , 曾竟 , 买里克扎提?买合木提 , 阿布都热西提?阿布力克木 . HBr催化α-溴代甲基酮类化合物的全脱溴反应研究[J]. 有机化学, 2021 , 41(5) : 2121 -2126 . DOI: 10.6023/cjoc202010006
The debromination reaction of α-bromomethylketone compounds was achieved by using water as the hydrogen source under the catalysis of HBr. Using α-bromomethylketones as raw materials, tetrahydrofuran as solvent, when the molar ratio of α-bromomethylketone to 5% mass fraction hydrobromic acid was 1.0:0.2, the debrominated product could be obtained with a isolated yield of 94% [high performance liquid chromatography (HPLC) yield 96%] by reacting at 180 ℃ for 5~14 h. All products were confirmed by1H NMR and 13C NMR spectra.
Key words: α-bromomethylketone; HBr; debromination
[1] | Gribble, G. W. Fortschr. Chem. Org. Naturst. 1996, 68, 1. |
[2] | (a) Bhaskar, T.; Matsui, T.; Kaneko, J.; Uddin, M. A.; Muto, A.; Sakata, Y. Green Chem. 2002, 4, 372. |
[2] | (b) Pee, K. H. V. Angew. Chem., Int. Ed. 2003, 42, 3718. |
[2] | (c) Agarwal, V.; Miles, Z. D.; Winter, J. M.; Eusta?quio, A. S.; El Gamal, A. A.; Moore, B. S. Chem. Rev. 2017, 117, 5619. |
[3] | Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2002, 102, 4009. |
[4] | Wu, H.-W.; Yang, G. S. Chin. J. Org. Chem. 2008, 28, 2132. (in Chinese). |
[4] | (吴红伟, 杨高升, 有机化学, 2008, 28, 2132.). |
[5] | Sun, N.; Wang, X.; Ding, Z, B.; Zhang, Q.; Xu, X.; Xu, H. J.; Wang, S. F. Chin. J. Org. Chem. 2016, 36, 2489. (in Chinese). |
[5] | (孙楠, 王欣, 丁志彬, 张齐, 徐徐, 徐海军, 王石发, 有机化学, 2016, 36, 2489.) |
[6] | Yang, J. W.; Chen, J. B.; Wang, S. J.; Wu, X. M.; Ma, B. D.; Xu, Y. Chin. J. Org. Chem. 2018, 38, 1811. (in Chinese). |
[6] | (杨靖文, 陈建波, 王诗婕, 吴小梅, 马宝娣, 徐毅, 有机化学, 2018, 38, 1811.) |
[7] | Wang, M. R.; Wu, Y. Z.; Yao, J.; Deng, L.; Pan, Y. M.; Huang, K. B.; Tang, H. T. Chin. J. Org. Chem. 2019, 39, 3223. (in Chinese). |
[7] | (王毛锐, 吴雨峥, 姚健, 邓黎, 潘英明, 黄克斌, 唐海涛, 有机化学, 2019, 39, 3223.) |
[8] | Xue, F.-L.; Xiong, J. F.; Mo, G. Z.; Peng, P.; Chen, R. H. Chin. J. Org. Chem. 2013, 33, 2291. (in Chinese). |
[8] | (薛福玲, 熊金锋, 莫广珍, 彭湃, 陈任宏, 有机化学, 2013, 33, 2291.) |
[9] | Maji, T.; Karmakar, A.; Reiser, O. J. Org. Chem. 2011, 76, 736. |
[10] | Wang, Z.-J.; Ghasimi, S.; Landfester, K.; Zhang, K. A. I. J. Mater. Chem. A 2014, 2, 18720. |
[11] | Li, X.-Y.; Hao, Z. K.; Zhang, F.; Li, H. X. ACS Appl. Mater. Interfaces 2016, 8, 12141. |
[12] | Li, Z.-P.; Zhi, Y. F.; Shao, P. P.; Xia, H.; Li, G. S.; Feng, X.; Chen, X.; Shi, Z.; Liu, X. M. Appl. Catal., B 2019, 245 , 334. |
[13] | Zhong, Q.; Ma, F.; Liu, C. Q.; Shao, J. G. Chin. J. Org. Chem. 1991, 11, 209. (in Chinese). |
[13] | (钟琦, 马锋, 刘长庆, 邵建国, 有机化学, 1991, 11, 209.) |
[14] | Wang, Y.-C.; Yan, T. H. Chem. Commun. 2000, 56, 545. |
[15] | Huang, Z.-Z.; Tang, Y. J. Org. Chem. 2002, 67, 5320. |
[16] | Maleczka Jr, R. E.; Rahaim Jr, R. J.; Teixeira, R. R. Tetrahedron Lett. 2002, 43, 7087. |
[17] | Lee, S. H.; Cho, M. Y.; Nam, M. H.; Park, Y. S.; Yoo, B. W.; Lee, C. W.; Yoon, C. M. Synth. Commun. 2005, 35, 1335. |
[18] | Li, J.; Ye, D. J.; Liu, H.; Luo, X. M.; Jiang, H. L. Synth. Commun. 2008, 38, 567. |
[19] | Li, H.-S.; Li, Y. Q. Chin. Chem. Lett. 2010, 21, 931. |
[20] | Dong, W.-L.; Cai, W. X.; Wu, R.; Li, Z. M.; Zhao, W. G.; Liu, X. H. Phosphorus Sulfur 2016, 191, 980. |
[21] | Lu, Z.; Yang, Y. Q. Synthesis 2019, 51, 508. |
[22] | Yang, Y.; Hasimujiang, B.; Rexit, A. A. Chin. J. Org. Chem. 2019, 39, 727. (in Chinese). |
[22] | (杨莹, 哈斯木江?巴拉提, 阿布都热西提?阿布力克木, 有机化学, 2019, 39, 727.) |
[23] | (a) Sadhukhan, S.; Baire, B. Adv. Synth. Catal. 2018, 360, 298. |
[23] | (b) Sadhukhan, S.; Baire, B. ChemistrySelect 2019, 4, 3376. |
[24] | Wang, H.; Zheng, M. X.; Guo, H. M.; Huang, G. Z.; Cheng, Z.; Rexit, A. A. Eur. J. Org. Chem. 2020, 41, 6455. |
[25] | Tan, J.-J.; Liu, B. B.; Su, S. S. Org. Chem. Front. 2018, 5, 3093. |
[26] | Budweg, S.; Junge, K.; Beller, M. Chem. Commun. 2019, 55, 14143. |
[27] | Mikhael, M.; Adler, S.; Wengryniuk, S. Org. Lett. 2019, 21, 5889. |
[28] | Liang, S.-Z.; Hammond, G. B.; Xu, B. Chem. Commun. 2015, 51, 903. |
[29] | Moriyama, K.; Takemura, M.; Togo, H. Org. Lett. 2012, 14, 2414. |
[30] | Ma, X.-Y.; Li, Z. F.; Liu, F. J.; Cao, S. L.; Rao, H. H. Adv. Synth. Catal. 2014, 356, 1741. |
[31] | Plank, T. N.; Drake, J. L.; Kim, D. K.; Funk, D. W. Adv. Synth. Catal. 2012, 354, 597. |
[32] | Li, F.; Wang, N. N.; Lu, L.; Zhu, G. J. J. Org. Chem. 2015, 80, 3538. |
[33] | Gülcemal, S.; Gülcemal, D.; Whitehead, G. F. S.; Xiao, J. L. Chem. Eur. J. 2016, 22, 10513. |
/
〈 |
|
〉 |