综述与进展

过渡金属催化的碳氢键与一氧化碳的反应

  • 武泽臣 ,
  • 程沧 ,
  • 张扬会
展开
  • a 同济大学化学科学与工程学院 上海 200092
    b 同济大学上海市化学品分析、风险评估与控制重点实验室 上海 200092

收稿日期: 2020-11-05

  修回日期: 2020-12-22

  网络出版日期: 2021-02-22

基金资助

国家自然科学基金(21372176); 国家自然科学基金(21672162)

Transition Metal-Catalyzed Reactions of C—H Bonds with Carbon Monoxide

  • Zechen Wu ,
  • Cang Cheng ,
  • Yanghui Zhang
Expand
  • a School of Chemical Science and Engineering, Tongji University, Shanghai 200092
    b Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092
*Corresponding author.E-mail:

Received date: 2020-11-05

  Revised date: 2020-12-22

  Online published: 2021-02-22

Supported by

National Natural Science Foundation of China(21372176); National Natural Science Foundation of China(21672162)

摘要

一氧化碳是一种廉价的活性气体, 其反应原子经济性高并且可以有效地延长碳链, 因此CO是一种非常重要的碳源, 特别是在羰基化反应中. 羰基化反应是合成酸酐、酰胺及酯等含羰基化合物的最有效的方法之一. C—H键广泛存在于有机化合物中, 近几十年来, C—H键活化和官能团化的研究取得了很大的进展, C—H键与CO的反应也引起了人们的广泛关注. 主要综述了过去几十年间, 过渡金属, 如钯、钌、铑、钴和铜, 催化的碳氢键与一氧化碳反应的研究进展.

本文引用格式

武泽臣 , 程沧 , 张扬会 . 过渡金属催化的碳氢键与一氧化碳的反应[J]. 有机化学, 2021 , 41(6) : 2155 -2174 . DOI: 10.6023/cjoc202011008

Abstract

Carbon monoxide is a cheap and reactive gas, and its reactions are atom-economic and can effectively extend the carbon chain. Therefore, CO is an essential carbon source, in particular in the carbonylation reaction. The carbonylation reaction is one of the most effective methods for the synthesis of carbonyl-containing compounds, such as acid anhydrides, amides, esters, etc. On the other hand, carbon-hydrogen bonds widely exist in organic compounds. In recent decades, great progress has been made in the research of activation and functionalization of C—H bonds, and the reactions of C—H bonds with CO also gained considerable interests. The research progress of the reactions of carbon-hydrogen bonds with carbon monoxide catalyzed by transition metals, such as palladium, ruthenium, rhodium, cobalt and copper over the past decades is reviewed.

参考文献

[1]
Chen, Y. T. Synthesis-Stuttgart 2016, 48,2483.
[2]
Ji, F. H.; Li, X. W.; Wu, W. Q.; Jiang, H. F. J. Org. Chem. 2014, 79,11246.
[3]
Dangel, B. D.; Godula, K.; Youn, S. W.; Sezen, B.; Sames, D. J. Am. Chem. Soc. 2002, 124,11856.
[4]
Wang, C.; Zhang, L.; Chen, C. P.; Han, J.; Yao, Y. M.; Zhao, Y. S. Chem. Sci. 2015, 6,4610.
[5]
Song, J.; Sun, H. S.; Sun, W.; Fan, Y. X.; Li, C.; Wang, H. T.; Xiao, K.; Qian, Y. Adv. Synth. Catal. 2019, 361,5521.
[6]
Barsu, N.; Bolli, S. K.; Sundararaju, B. Chem. Sci. 2017, 8,2431.
[7]
Yamashita, S.; Kurono, N.; Senboku, H.; Tokuda, M.; Orito, K. Eur. J. Org. Chem. 2009, 2009 1173.
[8]
Zhang, Q.; Shi, B.-F. Chin. J. Chem. 2019, 37,647.
[9]
Zhang, S.; Liao, G.; Shi, B.-F. Chin. J. Org. Chem. 2019, 39,1522(in Chinese).
[9]
( 张硕, 廖港, 史炳锋, 有机化学, 2019, 39,1522.)
[10]
Liao, G.; Wu, Y.-J.; Shi, B.-F. Acta Chim. Sinica 2020, 78,289(in Chinese).
[10]
( 廖港, 吴勇杰, 史炳锋, 化学学报, 2020, 78,289.)
[11]
Zhang, T.-Y.; Wei, X.-N.; Wang, H.-Y.; Liu, Z.-D.; Wei, G.-H. Guangzhou Chem. Ind. 2019, 47,20(in Chinese).
[11]
( 张亭妍, 委旭宁, 王宏雁, 刘钟栋, 魏国华, 广州化工, 2019, 47,20.)
[12]
Wang, Q.; Gu, Q.; You, S.-L. Acta Chim. Sinica 2019, 77,690(in Chinese).
[12]
( 王强, 顾庆, 游书力, 化学学报, 2019, 77,690.)
[13]
Huang, J.-P.; Gu, Q.; You, S.-L. Chin. J. Org. Chem. 2018, 38,51(in Chinese).
[13]
( 黄家翩, 顾庆, 游书力, 有机化学, 2018, 38,51.)
[14]
Yi, Y.-K.; Chen, M.; Guan, Z.-H. Chin. Sci. Bull. 2015, 60,2927(in Chinese).
[14]
( 易育堃, 陈明, 关正辉, 科学通报, 2015, 60,2927.)
[15]
Li, Y. H.; Hu, Y. Y.; Wu, X. F. Chem. Soc. Rev. 2018, 47,172.
[16]
Fujiwara, Y.; Kawauchi, T.; Taniguchi, H. J. Chem. Soc., Chem. Commun. 1980,220.
[17]
Itahara, T. Chem. Lett. 1982,1151.
[18]
Itahara, T. Chem. Lett. 1983,127.
[19]
Chiesa, A.; Ugo, R. J. Organomet. Chem. 1985, 279,215.
[20]
Ugo, R.; Chiesa, A. J. Chem. Soc., 1987,2625.
[21]
Taniguchi, Y.; Yamaoka, Y.; Nakata, K.; Takaki, K.; Fujiwara, Y. Chem. Lett. 1995,345.
[22]
Ohashi, S.; Sakaguchi, S.; Ishii, Y. Chem. Commun. 2005,486.
[23]
Liu, B.; Hu, F.; Shi, B. F. ACS Catal. 2015, 5,1863.
[24]
Ugo, R.; Chiesa, A.; Nardi, P.; Psaro, R. J. Mol. Catal. 1990, 59,23.
[25]
Zhang, H.; Liu, D.; Chen, C. Y.; Liu, C.; Lei, A. W. Chem.-Eur. J. 2011, 17,9581.
[26]
Zhang, H.; Shi, R. Y.; Gan, P.; Liu, C.; Ding, A. X.; Wang, Q. Y.; Lei, A. W. Angew. Chem., Int. Ed. 2012, 51,5204.
[27]
Ozawa, F.; Yamagami, I.; Nakano, M.; Fujisawa, F.; Yamamoto, A. Chem. Lett. 1989,125.
[28]
Liu, B.; Shi, B. F. Synlett 2013, 24,2274.
[29]
Wang, Z. C.; Li, Y. H.; Zhu, F. X.; Wu, X. F. Adv. Synth. Catal. 2016, 358,2855.
[30]
Liu, B.; Jiang, H. Z.; Shi, B. F. Org. Biomol. Chem. 2014, 12,2538.
[31]
Liang, D. D.; He, Y. M.; Zhu, Q. Org. Lett. 2014, 16,2748.
[32]
Vicente, J.; Saura-Llamas, I.; García-López, J.-A.; Calmuschi-Cula, B.; Bautista, D. Organometallics 2007, 26,2768.
[33]
Lopez, B.; Rodriguez, A.; Santos, D.; Albert, J.; Ariza, X.; Garcia, J.; Granell, J. Chem. Commun. 2011, 47,1054.
[34]
Liang, D. D.; Hu, Z. W.; Peng, J. L.; Huang, J. B.; Zhu, Q. Chem. Commun. 2013, 49,173.
[35]
Orito, K.; Horibata, A.; Nakamura, T.; Ushito, H.; Nagasaki, H.; Yuguchi, M.; Yamashita, S.; Tokuda, M. J. Am. Chem. Soc. 2004, 126,14342.
[36]
Guan, Z.-H.; Chen, M.; Ren, Z.-H. J. Am. Chem. Soc. 2012, 134,17490.
[37]
Rajeshkumar, V.; Lee, T. H.; Chuang, S. C. Org. Lett. 2013, 15,1468.
[38]
Chen, M.; Ren, Z. H.; Wang, Y. Y.; Guan, Z. H. J. Org. Chem. 2015, 80,1258.
[39]
Zhang, X.; Dong, S.; Niu, X.; Li, Z.; Fan, X.; Zhang, G. Org. Lett. 2016, 18,4634.
[40]
Zhang, X. P.; Li, Z. W.; Ding, Q. Q.; Li, X. C.; Fan, X. S.; Zhang, G. S. Adv. Synth. Catal. 2019, 361,976.
[41]
Cheng, X. F.; Wang, T.; Li, Y.; Wu, Y.; Sheng, J.; Wang, R.; Li, C.; Bian, K. J.; Wang, X. S. Org. Lett. 2018, 20,6530.
[42]
Li, Y.; Cheng, X.-F.; Fei, F.; Wu, T.-R.; Bian, K.-J.; Zhou, X.; Wang, X.-S. Chem. Commun. 2020, 56,11605.
[43]
Ma, B.; Wang, Y.; Peng, J. L.; Zhu, Q. J. Org. Chem. 2011, 76,6362.
[44]
Shi, R. Y.; Liao, F.; Niu, H. Y.; Lei, A. W. Org. Chem. Front. 2018, 5,1957.
[45]
Li, H.; Cai, G. X.; Shi, Z. J. Dalton. Trans. 2010, 39,10442.
[46]
Dai, H. X.; Stepan, A. F.; Plummer, M. S.; Zhang, Y. H.; Yu, J. Q. J. Am. Chem. Soc. 2011, 133,7222.
[47]
Zhang, L.; Wang, C.; Han, J.; Huang, Z. B.; Zhao, Y. S. J. Org. Chem. 2016, 81,5256.
[48]
Giri, R.; Yu, J. Q. J. Am. Chem. Soc. 2008, 130,14082.
[49]
Giri, R.; Lam, J. K.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132,686.
[50]
Chen, M.; Ren, Z. H.; Wang, Y. Y.; Guan, Z. H. Angew. Chem., Int. Ed. 2013, 52,14196.
[51]
Houlden, C. E.; Hutchby, M.; Bailey, C. D.; Ford, J. G.; Tyler, S. N. G.; Gagne, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Angew. Chem., Int. Ed. 2009, 48,1830.
[52]
Lu, Y.; Leow, D. S.; Wang, X. S.; Engle, K. M.; Yu, J. Q. Chem. Sci. 2011, 2,967.
[53]
Luo, S.; Luo, F. X.; Zhang, X. S.; Shi, Z. J. Angew. Chem., Int. Ed. 2013, 52,10598.
[54]
Lee, T. H.; Jayakumar, J.; Cheng, C. H.; Chuang, S. C. Chem. Commun. 2013, 49,11797.
[55]
Zhang, J.; Zhang, X. Y.; Fan, X. S. J. Org. Chem. 2016, 81,3206.
[56]
Fujiwara, Y.; Takaki, K.; Taniguchi, Y. Synlett 1996,591.
[57]
Xie, P.; Xie, Y. J.; Qian, B.; Zhou, H.; Xia, C. G.; Huang, H. M. J. Am. Chem. Soc. 2012, 134,9902.
[58]
Xie, P.; Xia, C. G.; Huang, H. M. Org. Lett. 2013, 15,3370.
[59]
Balavoine, G.; Clinet, J. C. J. Organomet. Chem. 1990,390, c84.
[60]
Yoo, E. J.; Wasa, M.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132,17378.
[61]
Wang, P. L.; Li, Y.; Wu, Y.; Li, C.; Lan, Q.; Wang, X. S. Org. Lett. 2015, 17,3698.
[62]
McNally, A.; Haffemayer, B.; Collins, B. S. L.; Gaunt, M. J. Nature 2014, 510,129.
[63]
Calleja, J.; Pla, D.; Gorman, T. W.; Domingo, V.; Haffemayer, B.; Gaunt, M. J. Nat. Chem. 2015, 7,1009.
[64]
Willcox, D.; Chappell, B. G. N.; Hogg, K. F.; Calleja, J.; Smalley, A. P.; Gaunt, M. J. Science 2016, 354,851.
[65]
Hogg, K. F.; Trowbridge, A.; Alvarez-Perez, A.; Gaunt, M. J. Chem. Sci. 2017, 8,8198.
[66]
Cabrera-Pardo, J. R.; Trowbridge, A.; Nappi, M.; Ozaki, K.; Gaunt, M. J. Angew. Chem., Int. Ed. 2017, 56,11958.
[67]
Png, Z. M.; Cabrera-Pardo, J. R.; Cadahia, J. J.; Gaunt, M. J. Chem. Sci. 2018, 9,7628.
[68]
Cai, S.-L.; Li, Y.; Yang, C.; Sheng, J.; Wang, X.-S. ACS Catal. 2019, 9,10299.
[69]
Carny, T.; Rocaboy, R.; Clemenceau, A.; Baudoin, O. Angew. Chem. 2020, 132,19142.
[70]
Chen, H. J.; Cai, C. B.; Liu, X. H.; Li, X. W.; Jiang, H. F. Chem. Commun. 2011, 47,12224.
[71]
Tanaka, K.; Ewing, W. R.; Yu, J. Q. J. Am. Chem. Soc. 2019, 141,15494.
[72]
Moore, E. J.; Pretzer, W. R.; Oconnell, T. J.; Harris, J.; Labounty, L.; Chou, L.; Grimmer, S. S. J. Am. Chem. Soc. 1992, 114,5888.
[73]
Chatani, N.; Ie, Y.; Kakiuchi, F.; Murai, S. J. Org. Chem. 1997, 62,2604.
[74]
Imoto, S.; Uemura, T.; Kakiuchi, F.; Chatani, N. Synlett 2007,170.
[75]
Chatani, N.; Yorimitsu, S.; Asaumi, T.; Kakiuchi, F.; Murai, S. J. Org. Chem. 2002, 67,7557.
[76]
Tlili, A.; Schranck, J.; Pospech, J.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2013, 52,6293.
[77]
Tlili, A.; Schranck, J.; Pospech, J.; Neumann, H.; Beller, M. ChemCatChem 2014, 6,1562.
[78]
Chatani, N.; Ishii, Y.; Ie, Y.; Kakiuchi, F.; Murai, S. J. Org. Chem. 1998, 63,5129.
[79]
Fukuyama, T.; Chatani, N.; Kakiuchi, F.; Murai, S. J. Org. Chem. 1997, 62,5647.
[80]
Chatani, N.; Kamitani, A.; Murai, S. J. Org. Chem. 2002, 67,7014.
[81]
Chatani, N.; Fukuyama, T.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 1996, 118,493.
[82]
Chatani, N.; Fukuyama, T.; Tatamidani, H.; Kakiuchi, F.; Murai, S. J. Org. Chem.2000, 65, 4039.
[83]
Fukuyama, T.; Chatani, N.; Tatsumi, J.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 1998, 120,11522.
[84]
Ie, Y.; Chatani, N.; Ogo, T.; Marshall, D. R.; Fukuyama, T.; Kakiuchi, F.; Murai, S. J. Org. Chem. 2000, 65,1475.
[85]
Asaumi, T.; Chatani, N.; Matsuo, T.; Kakiuchi, F.; Murai, S. J. Org. Chem. 2003, 68,7538.
[86]
Asaumi, T.; Matsuo, T.; Fukuyama, T.; Ie, Y.; Kakiuchi, F.; Chatani, N. J. Org. Chem. 2004, 69,4433.
[87]
Haito, A.; Yamaguchi, M.; Chatani, N. Asian J. Org. Chem. 2018, 7,1315.
[88]
Inoue, S.; Shiota, H.; Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2009, 131,6898.
[89]
Shibata, K.; Hasegawa, N.; Fukumoto, Y.; Chatani, N. ChemCatChem 2012, 4,1733.
[90]
Hasegawa, N.; Charra, V.; Inoue, S.; Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2011, 133,8070.
[91]
Hasegawa, N.; Shibata, K.; Charra, V.; Inoue, S.; Fukumoto, Y.; Chatani, N. Tetrahedron 2013, 69,4466.
[92]
Kunin, A. J.; Eisenberg, R. J. Am. Chem. Soc. 1986, 108,535.
[93]
Sakakura, T.; Sodeyama, T.; Sasaki, K.; Wada, K.; Tanaka, M. J. Am. Chem. Soc. 1990, 112,7221.
[94]
Zhou, D. Y.; Koike, T.; Suetsugu, S.; Onitsuka, K.; Takahashi, S. Inorg. Chim. Acta 2004, 357,3057.
[95]
Chatani, N.; Uemura, T.; Asaumi, T.; Ie, Y.; Kakiuchi, F.; Murai, S. Can. J. Chem. 2005, 83,755.
[96]
Guan, Z. H.; Ren, Z. H.; Spinella, S. M.; Yu, S. C.; Liang, Y. M.; Zhang, X. M. J. Am. Chem. Soc. 2009, 131,729.
[97]
Du, Y.; Hyster, T. K.; Rovis, T. Chem. Commun. 2011, 47,12074.
[98]
Gao, B.; Liu, S.; Lan, Y.; Huang, H. M. Organometallics 2016, 35,1480.
[99]
Huang, Q. F.; Han, Q. S.; Fu, S. R.; Yao, Z. Z.; Su, L.; Zhang, X. F.; Lin, S.; Xiang, S. C. J. Org. Chem. 2016, 81,12135.
[100]
Gulias, M.; Marcos-Atanes, D.; Mascarenas, J. L.; Font, M. Org. Process Res. Dev. 2019, 23,1669.
[101]
Du, R. R.; Zhao, K.; Liu, J. H.; Han, F.; Xia, C. G.; Yang, L. Org. Lett. 2019, 21,6418.
[102]
Sakakura, T.; Ishiguro, K.; Okano, M.; Sako, T. Chem. Lett. 1997,1089.
[103]
Choi, J. C.; Kobayashi, Y.; Sakakura, T. J. Org. Chem. 2001, 66,5262.
[104]
Ishii, Y.; Chatani, N.; Kakiuchi, F.; Murai, S. Organometallics 1997, 16,3615.
[105]
Ishii, Y.; Chatani, N.; Kakiuchi, F.; Murai, S. Tetrahedron Lett. 1997, 38,7565.
[106]
Chatani, N.; Asaumi, T.; Ikeda, T.; Yorimitsu, S.; Ishii, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2000, 122,12882.
[107]
Murahashi, S. J. Am. Chem. Soc. 1955, 77,6403.
[108]
Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16,4688.
[109]
Liu, X. G.; Zhang, S. S.; Jiang, C. Y.; Wu, J. Q.; Li, Q. J.; Wang, H. G. Org. Lett. 2015, 17,5404.
[110]
Zeng, L.; Li, H. R.; Tang, S.; Gao, X. L.; Deng, Y.; Zhang, G. T.; Pao, C. W.; Chen, J. L.; Lee, J. F.; Lei, A. W. ACS Catal. 2018, 8,5448.
[111]
Qiu, S. X.; Zhai, S. X.; Wang, H. F.; Tao, C.; Zhao, H.; Zhai, H. B. Adv. Synth. Catal. 2018, 360,3271.
[112]
Sau, S. C.; Mei, R. H.; Struwe, J.; Ackermann, L. ChemSusChem 2019, 12,3023.
[113]
Williamson, P.; Galvan, A.; Gaunt, M. J. Chem. Sci. 2017, 8,2588.
[114]
Zeng, L.; Tang, S.; Wang, D.; Deng, Y.; Chen, J. L.; Lee, J. F.; Lei, A. W. Org. Lett. 2017, 19,2170.
[115]
Li, Y. H.; Dong, K. W.; Zhu, F. X.; Wang, Z. C.; Wu, X. F. Angew. Chem., Int. Ed. 2016, 55,7227.
[116]
Li, Y. H.; Zhu, F. X.; Wang, Z. C.; Wu, X. F. ACS Catal. 2016, 6,5561.
[117]
Li, Y. H.; Wang, C. S.; Zhu, F. X.; Wang, Z. C.; Dixneuf, P. H.; Wu, X. F. ChemSusChem 2017, 10,1341.
文章导航

/