研究论文

钯催化烯烃杂环化反应制备[60]富勒烯二氢呋喃化合物

  • 朱三娥 ,
  • 豆礼锋 ,
  • 张建辉 ,
  • 吴缨 ,
  • 杨伟 ,
  • 鲁红典 ,
  • 卫春祥 ,
  • 邓崇海 ,
  • 董强
展开
  • 1 合肥学院能源材料与化工学院 合肥 230601

收稿日期: 2020-11-10

  修回日期: 2020-12-16

  网络出版日期: 2021-02-22

基金资助

国家自然科学基金(21702042); 安徽省高校优秀人才(gxyq2019114); 安徽省高校优秀人才(gxyqZD2019085); 安徽省重点研究与开发计划(201904b11020040)

Palladium-Catalyzed Synthesis of Dihydrofuran-Fused [60]Fullerene Derivatives via Heteroannulation of Olefins

  • San'e Zhu ,
  • Lifeng Dou ,
  • Jianhui Zhang ,
  • Ying Wu ,
  • Wei Yang ,
  • Hongdian Lu ,
  • Chunxiang Wei ,
  • Chonghai Deng ,
  • Qiang Dong
Expand
  • 1 School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601
* Corresponding authors. E-mail: ;

Received date: 2020-11-10

  Revised date: 2020-12-16

  Online published: 2021-02-22

Supported by

National Natural Science Foundation of China(21702042); Program of Anhui Province for Outstanding Talents in University(gxyq2019114); Program of Anhui Province for Outstanding Talents in University(gxyqZD2019085); and the Key Research and Development Project of Anhui Province(201904b11020040)

摘要

富勒烯二氢呋喃衍生物在光电、医药等领域具有较好的应用前景, 近年来已成为研究热点. 以氯化钯为催化剂,三氟甲烷磺酸铜为氧化剂, 烯烃衍生物和[60]富勒烯为原料, 通过C—H键活化和杂环化反应, 合成了一系列单取代和双取代的富勒烯二氢呋喃化合物. 利用1H NMR、13C NMR、IR和HRMS等对产物的结构进行了表征. 通过设计对照实验, 对反应机理进行了研究, 提出了可能的反应机理.

本文引用格式

朱三娥 , 豆礼锋 , 张建辉 , 吴缨 , 杨伟 , 鲁红典 , 卫春祥 , 邓崇海 , 董强 . 钯催化烯烃杂环化反应制备[60]富勒烯二氢呋喃化合物[J]. 有机化学, 2021 , 41(5) : 2082 -2090 . DOI: 10.6023/cjoc202011015

Abstract

With the good application prospects in the fields of optoelectronics and medicine, dihydrofuran-fused [60]fullerene derivatives have become a research hot topic in recent years. A series of monosubstituted and disubstituted dihydrofuran-fused [60]fullerene derivatives were synthesized by C—H bond activation and heterocyclic reaction using palladium chloride as catalyst, copper trifluoromethanesulfonate as oxidant, olefins and [60]fullerene as raw materials. The structures of the products were confirmed by1H NMR, 13C NMR, IR and HRMS. The reaction mechanism was studied by designing controlled experiments, and a possible reaction mechanism was proposed.

参考文献

[1]
Gaspar, H.; Figueira, F.; Pereira, L.; Mendes, A.; Viana, J. C.; Bernardo, G. Materials 2018, 11, 2560.
[2]
Akiyama, T. Bull. Chem. Soc. Jpn. 2019, 92, 1181.
[3]
Umeyama, T.; Imahori, H. Acc. Chem. Res. 2019, 52, 2046.
[4]
Speller, E. M.; Clarke, A. J.; Luke, J.; Lee, H. K. H.; Durrant, J. R.; Li, N.; Wang, T.; Wong, H. C.; Kim, J.-S.; Tsoi, W. C.; Li, Z. J. Mater. Chem. A 2019, 7, 23361.
[5]
Wan, X.; Li, C.; Zhang, M.; Chen, Y. Chem. Soc. Rev. 2020, 49, 2828.
[6]
Cheng, P.; Shi, Q.; Zhan, X. Acta Chim. Sinica 2015, 73, 252. (in Chinese).
[6]
(程沛, 史钦钦, 占肖卫, 化学学报, 2015, 73, 252.)
[7]
Sun, Y.; Gao, H.; Zhang, Y.; Wang, Y.; Kan, B.; Wan, X.; Zhang, H.; Chen, Y. Chin. J. Org. Chem. 2018, 38, 228. (in Chinese).
[7]
(孙延娜, 高欢欢, 张雅敏, 王云闯, 阚斌, 万相见, 张洪涛, 陈永胜, 有机化学, 2018, 38, 228.)
[8]
Yao, S.; Yuan, X.; Jiang, L.; Xiong, T.; Zhang, J. Materials 2020, 13, 2924.
[9]
Pan, Y.; Liu, X.; Zhang, W.; Liu, Z.; Zeng, G.; Shao, B.; Liang, Q.; He, Q.; Yuan, X.; Huang, D.; Chen, M. Appl. Catal. B: Environ. 2020, 265, 118579.
[10]
Krokosz, A.; Lichota, A.; Nowak, K. E.; Grebowski, J. Radiat. Phys. Chem. 2016, 128, 143.
[11]
Ghasemzadeh, P.; Rezayat, S. M.; Adeli, S.; Rahbar-Roshandel, N. Acta Med. Iran. 2016, 54, 478.
[12]
Goodarzi, S.; Da Ros, T.; Conde, J.; Sefat, F.; Mozafari, M. Mater. Today 2017, 20, 460.
[13]
Ra?ovi?, I. Mater. Sci. Technol. 2017, 33, 777.
[14]
Pochkaeva, E. I.; Podolsky, N. E.; Zakusilo, D. N.; Petrov, A. V.; Charykov, N. A.; Vlasov, T. D.; Penkova, A. V.; Vasina, L. V.; Murin, I. V.; Sharoyko, V. V.; Semenov, K. N. Prog. Solid State Chem. 2020, 57, 100255.
[15]
Hirsch, A.; Brettreich, M. Fullerenes: Chemistry and Reactions, Wliey-VCH, Weinheim, Germany, 2005.
[16]
Kadish, K. M.; Ruoff, R. S. Fullerenes: Chemistry, Physics, and Technology, Wiley, New York,2000.
[17]
Martín, N. Chem. Commun. 2006,2093.
[18]
Shi, L.; Wang, C.; Xu, Y.; Wang, Q. Chin. J. Org. Chem. 2015, 35, 1537. (in Chinese).
[18]
(史玲, 王彩芳, 徐雨, 汪秋安, 有机化学, 2015, 35, 1537.)
[19]
Chen, S.; Liu, H.; Liu, Z.; Li, S.; Chen, Y.; Li, H.; Li, D.; Zhang, W. Chin. J. Org. Chem. 2020, 40, 209. (in Chinese).
[19]
(陈书帅, 刘洪新, 刘昭明, 李赛妮, 陈玉婵, 李浩华, 李冬利, 章卫民, 有机化学, 2020, 40, 209.)
[20]
Kornsakulkarn, J.; Saepua, S.; Srichomthong, K.; Supothina, S.; Thongpanchang, C. Tetrahedron 2012, 68, 8480.
[21]
Li, S.; Hu, J.; Zhang, L.; Zhang, L.; Sun, Y.; Xie, Y.; Wu, S.; Liu, L.; Gao, Z. J. Pharm. Pharmacol. 2013, 65, 355.
[22]
Husain, A.; Khan, S. A.; Iram, F.; Iqbal, M. A.; Asif, M. Eur. J. Med. Chem. 2019, 171, 66.
[23]
Lien, J.-C.; Lin, C.-S.; Lai, H.-C.; Tsai, Y.-C.; Lin, Y.-F.; Huang, A.-C.; Huang, S.-H.; Lin, C.-W. Bioorg. Med. Chem. Lett. 2019, 29, 126742.
[24]
Ohno, M.; Yashiro, A.; Eguchi, S. Chem. Commun. 1996,291.
[25]
Chen, S.; Li, Z.-J.; Gao, X. J. Org. Chem. 2016, 81, 121.
[26]
Yang, H.-L.; Xu, L.-J.; Li, W.-Z.; Sun, T.; Duan, B.-R.; Chen, S.; Gao, X. RSC Adv. 2020, 10, 24549.
[27]
Zhang, T.-H.; Wang, G.-W.; Lu, P.; Li, Y.-J.; Peng, R.-F.; Liu, Y.-C.; Murata, Y.; Komatsu, K. Org. Biomol. Chem. 2004, 2, 1698.
[28]
Cheng, X.; Wang, G. W.; Murata, Y.; Komatsu, K. Chin. Chem. Lett. 2005, 16, 1327.
[29]
Wang, G.-W.; Li, F.-B. Org. Biomol. Chem. 2005, 3, 794.
[30]
Li, F.; Zhu, S.; You, X.; Wang, G. Chin. Sci. Bull. 2012, 57, 2269.
[31]
Li, C.; Zhang, D.; Zhang, X.; Wu, S.; Gao, X. Org. Biomol. Chem. 2004, 2, 3464.
[32]
Xia, S.; Liu, T.-X.; Zhang, P.; Ma, J.; Liu, Q.; Ma, N.; Zhang, Z.; Zhang, G. J. Org. Chem. 2018, 83, 862.
[33]
Wu, X. F.; Neumann, H.; Beller, M. Chem. Rev. 2013, 113, 1.
[34]
Li, J.; Yang, S.; Wu, W.; Jiang, H. Org. Chem. Front. 2020, 7, 1395.
[35]
Li, J.; Yang, S.; Wu, W.; Jiang, H. Chem. Asian J. 2019, 14, 4114.
[36]
Ma, X.; Yu, J.; Wang, Z.; Zhang, Y.; Zhou, Q. Chin. J. Org. Chem. 2020, 40, 2669. (in Chinese).
[36]
(马献涛, 于静, 王子龙, 张赟, 周秋菊, 有机化学, 2020, 40, 2669.)
[37]
Zhu, B.; Wang, G.-W. Org. Lett. 2009, 11, 4334.
[38]
Su, Y.-T.; Wang, Y.-L.; Wang, G.-W. Org. Chem. Front. 2014, 1, 689.
[39]
Hussain, M.; Niu, C.; Wang, G.-W. Org. Chem. Front. 2020, 7, 1249.
[40]
Wang, C.; Liu, Z.; Yin, Z.-C.; Wang, G.-W. Org. Chem. Front. 2020, 7, 2518.
[41]
Li, F.; Wang, J.-J.; Wang, G.-W. Chem. Commun. 2017, 53, 1852.
[42]
Yan, Y.-T.; Gao, W.; Jin, B.; Shan, D.-S.; Peng, R. F.; Chu, S.-J. J. Org. Chem. 2018, 83, 672.
[43]
Dai, C.; Han, Y.; Liu, L.; Huang, Z.-B.; Shi, D.-Q.; Zhao, Y. Org. Chem. Front. 2020, 7, 1703.
[44]
Zhang, J.; Han, L.; Bi, S.; Liu, T. J. Org. Chem. 2020, 85, 8387.
[45]
Kumar, P.; Kapur, M. Org. Lett. 2019, 21, 2134.
[46]
Wright, J. A.; Gaunt, M. J.; Spencer, J. B. Chem. Eur. J. 2006, 12, 949.
文章导航

/