研究论文

分子筛负载铜水相催化α,β-不饱和化合物的共轭硼化反应

  • 严沣 ,
  • 周丽洁 ,
  • 韩彪 ,
  • 张瑶瑶 ,
  • 李博解 ,
  • 汪连生 ,
  • 朱磊
展开
  • a 湖北工程学院化学与材料科学学院 湖北孝感 432000
    b 湖北大学材料科学与工程学院 武汉 430062
    c 华中科技大学生物无机化学与药物湖北省重点实验室 武汉 430074

收稿日期: 2020-11-11

  修回日期: 2020-11-17

  网络出版日期: 2021-02-22

基金资助

国家自然科学基金(21774029); 湖北省自然科学基金(2019CFB237); 湖北省自然科学基金(2019CFB354); 湖北省高等学校优秀中青年科技创新团队计划项目(T201816); 孝感市自然科学计划(XGKJ201910047); 孝感市自然科学计划(XGKJ2020010053); 湖北省“楚天学者”计划; 湖北工程学院高水平硕士学位论文培育资助项目

Zeolite Immobilized Copper Catalyzed Conjugate Borylation of α,β-Unsaturated Compounds in Aqueous Media

  • Feng Yan ,
  • Lijie Zhou ,
  • Biao Han ,
  • Yaoyao Zhang ,
  • Bojie Li ,
  • Liansheng Wang ,
  • Lei Zhu
Expand
  • a School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, Hubei 432000
    b School of Materials Science and Engineering, Hubei University, Wuhan 430062
    c Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074
* Corresponding authors. E-mail: ;

Received date: 2020-11-11

  Revised date: 2020-11-17

  Online published: 2021-02-22

Supported by

National Natural Science Foundation of China(21774029); Natural Science Foundation of Hubei Province(2019CFB237); Natural Science Foundation of Hubei Province(2019CFB354); Young and Middle-Aged Science and Technology Innovation Team Project in Higher Education Institutions of Hubei Province(T201816); Natural Science Foundation of Xiaogan City(XGKJ201910047); Natural Science Foundation of Xiaogan City(XGKJ2020010053); Chutian Scholar" Program of Hubei Province; High-Level Master's Thesis Cultivation Project of Hubei Engineering University

摘要

有机硼化物是一类重要的有机合成中间体. 以分子筛负载铜为催化剂, 在水相中温和的条件下, 实现α,β-不饱和化合物的共轭硼化反应, 建立了一种制备β-硼取代化合物的直接有效的新方法. 该方法操作简单, 底物普适性好, 可适用于不同类型取代的底物, 均以较高收率得到目标产物. 催化剂在反应结束后可通过离心分离回收, 循环使用7次后依然保持较高的催化反应活性.

本文引用格式

严沣 , 周丽洁 , 韩彪 , 张瑶瑶 , 李博解 , 汪连生 , 朱磊 . 分子筛负载铜水相催化α,β-不饱和化合物的共轭硼化反应[J]. 有机化学, 2021 , 41(5) : 2074 -2081 . DOI: 10.6023/cjoc202011017

Abstract

An eco-friendly zeolite immobilized copper catalyzed cojugate borylation of α,β-unsaturated compounds which was accomplished in aqueous media under mild conditions was reported. This method provided a direct and efficient pathway to achieve an important class of β-borylated compounds. Desired products were obtained in good to excellent yields with broad substrate scope. The advantages of this newly developed method include operational simplicity, mild conditions, good functional group tolerance and recyclability of catalyst. Remarkably, this zeolite supported copper catalyst could be recovered easily by simple centrifugation and reused for seven times without any significant decrease of catalytic activity.

参考文献

[1]
(a) Burkhardt, E. R.; Matos, K. Chem. Rev. 2006, 106, 2617.
[1]
(b) Crudden, C. M.; Glasspoole, B. W.; Lata, C. J. Chem. Commun. 2009, 45, 6704.
[1]
(c) Yang, J.; Deng, M.; Yu, T. Chin. J. Org. Chem. 2013, 33, 693. (in Chinese).
[1]
(杨军, 邓敏智, 于涛, 有机化学, 2013, 33, 693.)
[1]
(d) Huang, H.; Lin, H.; Wang, M.; Liao, J. Acta Chim. Sinica 2020, 78, 1229. (in Chinese).
[1]
(黄浩, 林华鑫, 王敏, 廖建, 化学学报, 2020, 78, 1229.)
[1]
(e) Wang, G.; Gan, Y.; Liu, Y. Chin. J. Chem. 2018, 36, 916.
[2]
Lennox, A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412.
[3]
Muncipinto, G.; Moquist, P. N.; Schreiber, S. L.; Schaus, S. E. Angew. Chem., Int. Ed. 2011, 50, 8172.
[4]
Ripin, D. H. B.; Cai, W.; Brenek, S. J. Tetrahedron Lett. 2000, 41, 5817.
[5]
Miura, T.; Nishida, Y.; Morimoto, M.; Murakami, M. J. Am. Chem. Soc. 2013, 135, 11497.
[6]
Matteson, D. S. J. Org. Chem. 2013, 78, 10009.
[7]
Shimizu, M. Angew. Chem., Int. Ed. 2011, 50, 5998.
[8]
Cho, C. S.; Ohe, T.; Uemura, S. J. Organomet. Chem. 1995, 49, 221.
[9]
Coeffard, V.; Moreau, X.; Thomassigny, C.; Greck, C. Angew. Chem., Int. Ed. 2013, 52, 5684.
[10]
Smoum, R.; Rubinstein, A.; Dembitsky, V. M.; Srebnik, M. Chem. Rev. 2012, 112, 4156.
[11]
(a) Kuang, Z.; Chen, H.; Yan, J.; Yang, K.; Lan, Y.; Song, Q. Org. Lett. 2018, 20, 5153.
[11]
(b) Kuang, Z.; Li, B.; Song, Q. Chem. Commun. 2018, 54, 34.
[11]
(c) Gao, G.; Kuang, Z.; Song, Q. Org. Chem. Front. 2018, 5, 2249.
[12]
Johnson, K. M. S. Curr. Opin. Invest. Drugs 2010, 11, 455.
[13]
Beenen, M. A.; An, C.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 6910.
[14]
Cvek, B. Drug Future 2012, 37, 561.
[15]
(a) Stavber, G.; ?asar, Z. ChemCatChem 2014, 6, 2162.
[15]
(b) Liu, Q.; Tian, B.; Tian, P.; Tong, X.; Lin, G.-Q. Chin. J. Org. Chem. 2015, 35, 1. (in Chinese).
[15]
(刘强, 田兵, 田平, 童晓峰, 林国强, 有机化学, 2015, 35, 1.)
[15]
(c) Liu, Y.; Zhang, W. Chin. J. Org. Chem. 2016, 36, 2249. (in Chinese).
[15]
(刘媛媛, 张万斌, 有机化学, 2016, 36, 2249.)
[16]
Bonet, A.; Gulyás, H.; Koshevoy, I. O.; Estevan, F.; Sanaú, M.; úbeda, A.; Fernández, E. Chem.-Eur. J. 2010, 16, 6382.
[17]
Bell, N. J.; Cox, A. J.; Cameron, N. R.; Evans, J. S. O.; Marder, T. B.; Duin, M. A.; Cornelis J.; Elsevier, C. J.; Baucherel, X.; Tullochc, A. A. D.; Tooze, R. P. Chem. Commun. 2004, 16, 1854.
[18]
Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9, 5031.
[19]
Shiomi, T.; Adachi, T.; Toribatake, K.; Zhou, L.; Nishiyama, H. Chem. Commun. 2009, 40, 5987.
[20]
Kajiwara, T.; Terabayashi, T.; Yamashita, M.; Nozaki, K. Angew. Chem., Int. Ed. 2008, 47, 6606.
[21]
Huang, X.; Hu, J.; Wu, M.; Wang, J.; Peng, Y.; Song, G. Green Chem. 2018, 20, 255.
[22]
Ito, H.; Yamanaka, H.; Tateiwa, J.-I.; Hosomi, A. Tetrahedron Lett. 2000, 41, 6821.
[23]
Takahashi, K.; Ishiyama, T.; Miyaura, N. J. Organomet. Chem. 2001, 625, 47.
[24]
(a) Mun, S.; Lee, J.-E.; Yun, J. Org. Lett. 2006, 8, 4887.
[24]
(b) Lee, J.-E.; Yun, J. Angew. Chem., Int. Ed. 2007, 47, 145.
[25]
O'Brien, J. M.; Lee, K.-S.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10630.
[26]
Solé, C.; Tatla, A.; Mata, J. A.; Whiting, A.; Gulyás, H.; Fernández, E. Chem.-Eur. J. 2011, 17, 14248.
[27]
(a) Gao, M.; Thorpe, S. B.; Santos, W. L. Org. Lett. 2009, 11, 3478.
[27]
(b) Chen, I.-H.; Yin, L.; Itano, M.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 11664.
[27]
(c) Mlynarski, S. N.; Schuster, C. H.; Morken, J. P. Nature 2014, 505, 386.
[27]
(d) Dewhurst, R. D.; Marder, T. B. Nat. Chem. 2014, 6, 279.
[28]
Thorpe, S. B.; Calderone, J. A.; Santos, W. L. Org. Lett. 2012, 14, 1918.
[29]
Stavber, G.; ?asar, Z. ChemCatChem 2014, 6, 2162.
[30]
(a) Kobayashi, S.; Xu, P.; Endo, T.; Ueno, M.; Kitanosono, T. Angew. Chem., Int. Ed. 2012, 51, 12763.
[30]
(b) Zhu, L.; Kitanosono, T.; Xu, P.; Kobayashi, S. Chem. Commun. 2015, 51, 11685.
[30]
(c) Zhu, L.; Kitanosono, T.; Xu, P.; Kobayashi, S. Beilstein J. Org. Chem. 2015, 11, 2007.
[31]
(a) Li, B.; Wang, L.; Qin, C.; Zhu, L. Catal. Commun. 2016, 86, 23.
[31]
(b) Zhu, L.; Wang, L.-S.; Li, B.; Fu Q.; Zhang, C.-P.; Li, W. Chem. Commun. 2016, 52, 6371.
[31]
(c) Zhu, L.; Li, B.; Wang, S.; Wang, W.; Wang, L.; Ding, L.; Qin, C. Polymers 2018, 10, 385.
[31]
(d) Wang, W.; Li, B.-J.; Xiao, Z.-F.; Yan, F.; Wei, P.-R.; Wang, L.-S.; Zhu, L. J. Chin. Chem. Soc. 2018, 65, 81.
[31]
(e) Wang, W.; Xiao, Z.; Huang, C.; Zheng, K.; Luo, Y.; Dong, Y.; Shen, Z.; Li, W.; Qin, C. Polymers 2019, 11, 1417.
[32]
Gawande, M. B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. S. Chem. Rev. 2016, 116, 3722.
[33]
Zhou, X.-F.; Sun, Y.-Y.; Wu, Y.-D.; Dai, J.-J.; Xu, J.; Huang, Y.; Xu, H.-J. Tetrahedron 2016, 72, 5691.
[34]
Wen, W.; Han, B.; Yan, F.; Ding, L.; Li, B.; Wang, L.; Zhu, L. Nanomaterials 2018, 8, 326.
[35]
Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301.
[36]
(a) Brezicki, G.; Kammert, J. D.; Gunnoe, T. B.; Paolucci, C.; Davis, R. J. ACS Catal. 2019, 9, 5308.
[36]
(b) Vanelderen, P.; Snyder, B. E. R.; Tsai, M.-L.; Hadt, R. G.; Vancauwenbergh, J.; Coussens, O.; Schoonheydt, R. A.; Sels, B. F.; Solomon, E. I. J. Am. Chem. Soc. 2015, 137, 6383.
[36]
(c) Wu, J.-F.; Gao, X.-D.; Wu, L.-M.; Wang, W. D.; Yu, S.-M.; Bai, S. ACS catal. 2019, 9, 8677.
[37]
Blasco, T.; Boronat, M.; Concepción, P.; Corma, A.; Law, D.; Vidal- Moya, J. A. Angew. Chem., Int. Ed. 2007, 46, 3938.
[38]
Moglie, Y.; Buxaderas, E.; Mancini, A.; Alonso, F.; Radivoy, G. ChemCatChem 2019, 11, 1487.
[39]
Garnier, T.; Sakly, R.; Danel, M.; Chassaing, S.; Pale, P. Synthesis 2017, 49, 1223.
[40]
Kuhn, P.; Pale, P.; Sommer, J.; Louis, B. J. Phys. Chem. C 2009, 113, 2903.
[41]
Zhou, L.; Li, S.; Su, Y.; Li, B.; Deng, F. Solid State Nucl. Magn. Reson. 2015, 66~ 67 , 29.
[42]
Isegawa, M.; Sameera, W. M. C.; Sharma, A. K.; Kitanosono, T.; Kato, M.; Kobayashi, S.; Morokuma, K. ACS Catal. 2017, 7, 5370.
[43]
(a) Singh, P.; Bhardwaj, A. J. Med. Chem. 2010, 53, 3707.
[43]
(b) Ravikumar, K. S.; Sinha, S.; Chandrasekaran, S. J. Org. Chem. 1999, 64, 5841.
[43]
(c) Berti, F.; Bincoletto, S.; Donati, I.; Fontanive, G.; Fregonesea, M.; Benedetti, F. Org. Biomol. Chem. 2011, 9, 1987.
[43]
(d) Barbero, M.; Bazzi, S.; Cadamuro, S.; Dughera, S.; Magistris, C.; Smarraa, A.; Venturello, P. Org. Biomol. Chem. 2011, 9, 2192.
文章导航

/