研究论文

利用三氟甲基磺酸钪催化的吲哚去芳构化反应合成3,3'-双吲哚衍生物

  • 王榕 ,
  • 徐立晨 ,
  • 卢逸 ,
  • 姜波 ,
  • 郝文娟
展开
  • a 江苏师范大学化学与材料科学学院 江苏徐州 221116
    b 江苏师范大学敬文书院 江苏徐州 221116
† 共同第一作者(These authors contributed equally to this work).

收稿日期: 2021-01-03

  修回日期: 2021-01-23

  网络出版日期: 2021-02-22

基金资助

国家自然科学基金(21602087); 江苏省品牌专业基金; 国家级大学生创新创业训练计划(201910320093Z)

Sc(OTf)3-Catalyzed Dearomatization of Indoles for the Synthesis of 3,3'-Bisindoles

  • Rong Wang ,
  • Lichen Xu ,
  • Yi Lu ,
  • Bo Jiang ,
  • Wenjuan Hao
Expand
  • a School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116
    b C. W. Chu College, Jiangsu Normal University, Xuzhou, Jiangsu 221116
* Corresponding authors. E-mail: ;

Received date: 2021-01-03

  Revised date: 2021-01-23

  Online published: 2021-02-22

Supported by

National Natural Science Foundation of China(21602087); Top-notch Academic Programs Project of Jiangsu Higher Education Institutions; National College Student?s Innovation and Entrepreneurship Training Program(201910320093Z)

摘要

报道了一类新颖的三氟甲基磺酸钪催化的吲哚-2-甲醇的去芳构化反应. 该反应利用吲哚-2-甲醇衍生物在酸性催化下发生极性翻转的特性, 将其吲哚环3-位的亲核中心转变为亲电位点, 实现与另一分子吲哚发生偶联反应, 合成了一系列具有环外双键结构的3,3'-双吲哚衍生物, 产率中等到优秀. 其中N-磺酰基团的强诱导作用和大位阻效应是吲哚-2-甲醇的吲哚环发生去芳构化的关键因素. 基于实验结果及文献报道, 提出了可能的反应机理, 其中涉及吲哚-2-甲醇衍生物的去羟基化和亲核加成等. 此外, 该反应具有高官能团兼容性、条件温和、操作简便等优点.

本文引用格式

王榕 , 徐立晨 , 卢逸 , 姜波 , 郝文娟 . 利用三氟甲基磺酸钪催化的吲哚去芳构化反应合成3,3'-双吲哚衍生物[J]. 有机化学, 2021 , 41(4) : 1582 -1590 . DOI: 10.6023/cjoc202101003

Abstract

A new Sc(OTf)3-catalyzed dearomatization of indole-2-methanols is reported. By using the characteristics of umpolung of the preformed indole-2-methanols in the presence of acid catalysts, its nucleophilic center at 3-position of indole ring could be transformed into the electrophilic site, thereby realizing the coupling reaction with another molecule indoles, which led to the synthesis of a series of 3,3'-bisindoles with exocyclic double bond unit in moderate to excellent yields. Among them, the strong induction and large steric effects of N-sulfonyl group are the key to the dearomatization of indole ring from indole-2-methanols. Based on the experimental results and literature reports, the possible reaction mechanism is proposed, which involves the dehydroxylation and nucleophilic addition of indole-2-methanol derivatives. In addition, this protocol features high functional group compatibility, mild conditions and simple operation.

参考文献

[1]
(a) Stara, I.G.; Stary, I. Acc. Chem. Res. 2020, 53,144.
[1]
(b) Hagui, W.; Doucet, H.; Soule, J.-F. Chem 2019, 5,2006.
[1]
(c) Korb, M.; Lang, H. Chem. Soc. Rev. 2019, 48,2829.
[1]
(d) Chou, C. Hydrocarb. Process. 2018, 97,71.
[1]
(e) Maneffa, A.; Priecel, P.; Lopez-Sanchez, J.A. ChemSusChem 2016, 9,2736.
[2]
(a) Sheng, F.-T.; Wang, J.-Y.; Tan, W.; Zhang, Y.-C.; Shi, F. Org. Chem. Front. 2020, 7,3967.
[2]
(b) Yang, W.-C.; Zhang, M.-M.; Feng, J.-G. Adv. Synth. Catal. 2020, 362,4446.
[2]
(c) Huck, C.J.; Sarlah, D. Chem 2020, 6,1589.
[2]
(d) Abou-Hamdan, H.; Kouklovsky, C.; Vincent, G. Synlett 2020, 31,1775.
[2]
(e) Ji, C.-L.; Hao, W.-J.; Zhang, J.; Geng, F.-Z.; Xu, T.; Tu, S.-J.; Jiang, B. Org. Lett. 2019, 21,6494.
[2]
(f) Chen, F.; Chen, H.; Wu, Q.; Luo, S. Chin. J. Org. Chem. 2020, 40,339. (in Chinese)
[2]
( 陈锋, 陈浩, 吴庆安, 罗书平, 有机化学, 2020, 40,339.)
[3]
(a) An, J.; Bandini, M. Eur. J. Org. Chem. 2020, 2020,4087.
[3]
(b) Lv, S.; Zhang, G.; Chen, J.; Gao, W. Adv. Synth. Catal. 2020, 362,462.
[3]
(c) Zeidan, N.; Lautens, M. Synthesis 2019, 51,4137.
[3]
(d) Zheng, C.; You, S.-L. Nat. Prod. Rep. 2019, 36,1589.
[3]
(e) Li, K.; Bai, L.; Luan, X. Chin. J. Org. Chem. 2019, 39,2211. (in Chinese)
[3]
( 李锟雨, 白璐, 栾新军, 有机化学, 2019, 39,2211.)
[3]
(f) Wu, W.-T.; Zhang, L.; You, S.-L. Acta Chim. Sinica 2017, 75,419. (in Chinese)
[3]
( 吴文挺, 张立明, 游书力, 化学学报, 2017, 75,419.)
[3]
(g) Yan, Q.; Fan, R.; Liu, B.; Su, S.; Wang, B.; Yao, T.; Tan, J.; Chin. J. Org. Chem. 2021, 41,455. (in Chinese)
[3]
( 闫强, 范荣, 刘斌斌, 苏帅松, 王勃, 姚团利, 谭嘉靖, 有机化学, 2021, 41,455.)
[4]
(a) Xia, Z.-L.; Xu-Xu, Q.-F.; Zheng, C.; You, S.-L. Chem. Soc. Rev. 2020, 49,286.
[4]
(b) Sharma, U.K.; Ranjan, P.; Van der Eycken, E.V.; You, S.-L. Chem. Soc. Rev. 2020, 49,8721.
[4]
(c) Cheng, Y.-Z.; Zhang, X.; You, S.-L. Sci. Bull. 2018, 63,809.
[4]
(d) Zheng, C.; You, S.-L. Acc. Chem. Res. 2020, 53,974.
[4]
(e) Zheng, C.; You, S.-L. Chem 2016, 1,830.
[4]
(f) Wu, W.-T.; Zhang, L.; You, S.-L. Chem. Soc. Rev. 2016, 45,1570.
[4]
(g) Zhou, C.-X.; Zhang, W.; You, S.-L. Angew. Chem., nt. Ed. 2012, 51,12662.
[4]
(h) Zhu, M.; Zhang, X.; You, S.-L. Chem. J. Chin. Univ. 2020, 41,1407. (in Chinese)
[4]
( 朱敏, 张霄, 游书力, 高等学校化学学报, 2020, 41,1407.)
[5]
(a) Kobayashi, M.; Aoki, S.; Gato, K.; Matsunami, K.; Kurosu, M.; Kitagawa, I. Chem. Pharm. Bull. 1994, 42,2449.
[5]
(b) Varoglu, M.; Corbett, T.H.; Valeriote, F.A.; Crews, P. J. Org. Chem. 1997, 62,7078.
[5]
(c) Anthoni, U.; Christophersen, C.; Nielsen, P.H. Alkaloids: Chemical and Biological Perspectives, Springer, New York, 1999, p. 163.
[5]
(d) Zheng, C.-J.; Kim, C.-J.; Bae, K.S.; Kim, Y.-H.; Kim, W.-G. J. Nat. Prod. 2006, 69,1816.
[5]
(e) Steven, A.; Overman, L.E. Angew. Chem., nt. Ed. 2007, 46,5488.
[5]
(f) Ruiz-Sanchis, P.; Savina, S.A.; Albericio, F.; Alvarez, M. Chem.-Eur. J. 2011, 17,1388.
[5]
(g) Repka, L.M.; Reisman, S.E. J. Org. Chem. 2013, 78,12314.
[6]
(a) Peng, X.; Zeng, Y.; Liu, H.; Xu, X.; Zhang, M.; Liu, Q. New J. Chem. 2019, 43,15153.
[6]
(b) Muthusamy, S.; Gunanathan, C.; Babu, S.A.; Suresh, E.; Dastidar, P. Chem. Commun. 2002,824.
[6]
(c) Li, G.; Bao, G.; Zhu, G.; Li, Y.; Huang, L. Sun, W.; Hong, L.; Wang, R. Org. Biomol. Chem. 2018, 16,3655.
[6]
(d) Hajra, S.; Roy, S. Org. Lett. 2020, 22,1458.
[6]
(e) Li, T.-R.; Zhang, M.-M.; Wang, B.-C.; Lu, L.-Q.; Xiao, W.-J. Org. Lett. 2018, 20,3237.
[7]
(a) Maity, A.; Roy, A.; Das, M.K.; De, S.; Naskar, M.; Bisai, A. Org. Biomol. Chem. 2020, 18,1679.
[7]
(b) Rokade, B.V.; Guiry, P.J. J. Org. Chem. 2020, 85,6172.
[7]
(c) Sai Prathima, P.; Rajesh, P.; Venkateswara, Rao, J.; Sai, Kailash, U.; Sridhar, B.; Mohan, Rao, M. Eur. J. Med. Chem. 2014, 84,155.
[7]
(d) Chauhan, P.; Chimni, S.S. Chem.-Eur. J. 2010, 16,7709.
[7]
(e) Babu, K.N.; Roy, A.; Singh, M.; Bisai, A. Org. Lett. 2018, 20,6327.
[8]
(a) He, Y.-Y.; Sun, X.-X.; Li, G.-H.; Mei, G.-J.; Shi, F. J. Org. Chem. 2017, 82,2462.
[8]
(b) Sheng, F.-T.; Li, Z.-M.; Zhang, Y.-Z.; Sun, L.-X.; Zhang, Y.-C.; Tan, W.; Shi, F. Chin. J. Chem. 2020, 38,583.
[9]
(a) Zhong, X.; Qi, S.; Li, Y.; Zhang, J.; Han, F.-S. Tetrahedron 2015, 71,3734.
[9]
(b) Ma, C.; Jiang, F.; Sheng, F.-T.; Jiao, Y.; Mei, G.-J.; Shi, F. Angew. Chem., nt. Ed. 2019, 58,3014.
[9]
(c) Chen, K.-W.; Wang, Z.-S.; Wu, P.; Yan, X.-Y.; Zhang, S.; Zhang, Y.-C.; Shi, F. J. Org. Chem. 2020, 85,10152.
文章导航

/