综述与进展

有机转化中二碘化钐及其他钐试剂近期发展研究

  • 刘晨 ,
  • 齐燕 ,
  • 刘永军
展开
  • 青岛科技大学化学与分子工程学院 光电传感与生命分析教育部重点实验室 青岛 266042

收稿日期: 2020-11-25

  修回日期: 2021-01-28

  网络出版日期: 2021-02-26

基金资助

山东省重点研发计划(2019GGXI02036)

Recent Development of Samarium Diiodide and Other Samarium Reagents in Organic Transformation

  • Chen Liu ,
  • Yan Qi ,
  • Yongjun Liu
Expand
  • Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042
*Corresponding authors.E-mail:;

Received date: 2020-11-25

  Revised date: 2021-01-28

  Online published: 2021-02-26

Supported by

Shandong Provincial Key Research and Development Program(2019GGXI02036)

摘要

钐试剂自被发现以来, 一直在有机合成中占据着一席之地. SmI2优异的单电子转移能力和还原能力都具有重要的研究价值. Sm、allylSmBr、SmI3等其他钐试剂的潜力也逐渐被开发出来. 综述了近5年来SmI2以及其他钐试剂介入的反应. 主要分为三大部分: (1) SmI2促进的偶联反应研究, (2)其他钐试剂(Sm, allylSmBr, SmI3, Sm(OTf)3)等促进的偶联反应研究, (3)钐试剂介入的有机还原反应.

本文引用格式

刘晨 , 齐燕 , 刘永军 . 有机转化中二碘化钐及其他钐试剂近期发展研究[J]. 有机化学, 2021 , 41(6) : 2202 -2216 . DOI: 10.6023/cjoc202011034

Abstract

Since the samarium diiodide was discovered, it has been occupying a key field in organic synthesis due to the excellent ability of both single electron transfer and reduction. Other samarium reagents have also been wildly developed in recent years, such as Sm, allylSmBr, SmI3and so on. In this review, the reactions mediated by samarium reagents especially SmI2 in latest five years are summarized. It mainly includes three parts: studies on the SmI2 promoted coupling reactions, studies on the coupling reactions promoted by other samarium reagents (Sm, allylSmBr, SmI3, Sm(OTf)3 etc.), and studies on the samarium reagents promoted organic reduction reactions.

参考文献

[1]
(a) Gansau?er, A.; Blum, H. Chem. Rev. 2000, 100,2771.
[1]
(b) Gansau?er, A.; Lauterbach, T.; Narayan, S. Angew. Chem. Int. Ed. 2003, 42,5556.
[1]
(c) Cuerva, J. M.; Justicia, J.; Oller-Lo?pez, J. L.; Oltra, J. E. Top. Curr. Chem. 2006, 264,63.
[1]
(d) Justicia, J.; Álvarez de Cienfuegos, L.; Cuerva, J. M. Chem. Soc. Rev. 2011, 40,3525.
[1]
(e) Streuff, J. Synthesis 2013, 45,281.
[2]
(a) Shabangi, M.; Flowers, R. A. II Tetrahedron Lett. 1997, 38,1137.
[2]
(b) Fuchs, J. R.; Mitchell, M. L.; Shabangi, M.; Flowers, R. A. II Tetrahedron Lett. 1997, 38,8157.
[2]
(c) Shabangi, M.; Sealy, J. M.; Fuchs, J. R.; Flowers, R. A. II Tetrahedron Lett. 1998, 39,4429.
[3]
Procter, D. J.; Flowers, R. A. I.; Skrydstrup, T. Organic Synthesis Using Samarium Diiodide: A Practical Guide, RSC Publishing, Cambridge, 2010,Chapter 4.
[4]
(a) Namy, J. L.; Girard, P.; Kagan, H. B. Nouv. J. Chim. 1977, 1,5.
[4]
(b) Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102,2693.
[5]
(a) Skrydstrup, T. Angew. Chem. In. Ed. 1997, 109,355.
[5]
(b) Krief, A.; Laval, A. M. Chem. Rev. 1999, 99,745.
[5]
(c) Kagan, B. H. Tetrahedron 2003, 59,10351.
[5]
(d) Berndt, M.; Gross, S.; Hlemann, A. Synlett 2004,422.
[5]
(e) Edmonds, D. J.; Johnston, D.; Procter, D. J. Chem. Rev. 2004, 104,3371.
[5]
(f) Jung, D. Y.; Kim, Y. H. Synlett 2005,3019.
[5]
(g) Rudkin, I. M.: Miller, L. C.; Procter, D. J. Organomet. Chem. 2008, 34,19.
[5]
(h) Concellón, J. M.; Rodríguez-Solla, H.; Concellón, C. Chem. Soc. Rev. 2010, 39,4103.
[5]
(i) Gopalaiah, K.; Kagan, H. B. Chem. Rec. 2013, 13,187.
[5]
(j) Gong, H. J.; Jia, X. S.; Zhai, H. B. Chin. J. Org. Chem. 2010, 30,939(in Chinese).
[5]
(巩洪举, 贾学顺, 翟宏斌, 有机化学, 2010, 30,939.)
[6]
Szostak, M.; Fazakerley, N. J.; Parmar, D.; Procter, D. J. Chem. Rev. 2014, 114,5959.
[7]
(a) Edmonds, D. J.; Johnston, D.; Procter, D. J. Chem. Rev. 2004, 104,3371.
[7]
(b) Steel, P. G. J. Chem. Soc., erkin Trans. 1 2001,2727.
[7]
(c) Molander, G. A.; Harris, C. R. Chem. Rev. 1996, 96,307.
[7]
(d) Choppin, S.; Ferreiro-Medeiros, L.; Barbarotto, M. Chem. Soc. Rev. 2013, 42,937.
[8]
Liu, Y. J.; Zhang, Y. M. Acta Chim. Sinica 2005, 63,341(in Chinese).
[8]
(刘永军, 张永敏, 化学学报, 2005, 63,341.)
[9]
Fukuzawa, S.; Nakanishi, A.; Fujinami, T.; Sakai, S. J. Chem. Soc., Chem. Commun. 1986,624.
[10]
Otsubo, K.; Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1986, 27,5763.
[11]
Koshimizu, M.; Nagatomo, M.; Inoue, M. Tetrahedron 2018: 74 3384.
[12]
Huang, H.-M.; He, Q.; Procter, D. J. Synlett 2020, 31,45.
[13]
Takahashi, K.; Fukushima, K.; Seto, M.; Togashi, A.; Arai, Y.; Honda, T. J. Org. Chem. 2018, 83,10636.
[14]
Fukaya, K.; Tanaka, Y.; Sato, A. C.; Kodama, K.; Yamazaki, H.; Ishimoto, T.; Nozaki, Y.; Iwaki, Y.; Yuki, Y.; Chida, N. Org. Lett. 2015, 17,2570.
[15]
Masson, G.; Py, S.; Valle?e, Y. Angew. Chem. Int. Ed. 2002, 41,1772.
[16]
Burchak, O. N.; Py, S. Tetrahedron 2009, 65,7333.
[17]
Gour, J.; Gatadi, S.; Malasala, S.; Yaddanpudi, M. V.; Nanduri, S. J. Org. Chem. 2019, 84,7488.
[18]
Shi, S.-C.; Szostak, M. Org. Lett. 2015, 17,5144.
[19]
Xie, T.-T.; Zhou, L.-J.; Shen, M.-M.; Li, J.-Y.; Lv, X. Tetrahedron Lett. 2015, 56,3982.
[20]
Huang, F.; Zhang, S. L. Org. Lett. 2019, 21,7430.
[21]
Gonzalez-Rodríguez, J.; Soto, M.; Soengas, R. G.; Rodriguezsolla, H. Tetrahedron 2020, 76,130839.
[22]
Doler, C.; Friess, M.; Lackner, F.; Weber, H.; Fischer, R. C.; Breinbauer, R. Tetrahedron 2020, 76,131249.
[23]
Suzuki, K.; Iwasaki, H.; Domasu, R.; Hitotsuyanagi, N.; Wakizaka, Y.; Tominaga, M.; Yamashita, M. Tetrahedron 2015, 71.5513.
[24]
Evdokimovaaa, N. M.; Lamoral-Theys, D.; Mathieu, V. B. Med. Chem. 2011, 19,7252.
[25]
Rossi, A.; Kapahi, P.; Natoli, G. Nature 2000, 403,103.
[26]
(a) Takahashi, K.; Arai, Y.; Honda, T. Tetrahedron Lett. 2017, 58,4048.
[26]
(b) Takahashi, K.; Arai, Y.; Ikegami-Kawai, M.; Honda, T. Tetrahedron 2020, 76,131148.
[27]
Cho, J. Y.; Williams, P. G.; Kwon, H. C.; Jensen, P. R.; Fenical, W. J. Nat. Prod. 2007, 70,1321.
[28]
Takahashi, K.; Fukushima, K.; Tsubuki, M. Tetrahedron Lett. 2018, 59,1435.
[29]
Suzuki, J.; Miyano, N.; Yashiro, S. P.; Umezawa, T. Org. Biomol. Chem. 2017, 15,6557.
[30]
Murakami, S.; Takemoto, T.; Shimizu, Z. Pharm. J. Soc. Jpn. 1953, 73,1026.
[31]
Johnson, R. L.; Koerner, J. F. J. Med. Chem. 1988, 31,2057;.
[32]
Sagrera, G.; Bertucci, A.; Seoane, G. Bioorg. Med. Chem. 2011, 19,3060.
[33]
Soto, M.; Soengas, R. G.; Artur, M. S. Chem.-Eur. J. 2019, 25,13104.
[34]
Liu, X.-J.; Wen, Q.; Xiang, L.; Leng, X.-B.; Chen, Y.-F. Chem.-Eur. J. 2020, 26.5494.
[35]
Namy, J. L.; Souppe, J.; Kagan, H. B. Tetrahedron Lett. 1983, 24,765.
[36]
(a) Miyabe, H.; Toruda, M.; Inoue, K.; Tajiri, K. J. Org. Chem. 1998, 63,4397.
[36]
(b) Sturino, C. F.; Fallis, A. G. J. Am. Chem. Soc. 1994, 116,7447.
[37]
Yoshimura, A.; Saeki, T.; Nomoto, A. Tetrahedron 2015, 71,5347.
[38]
Hassan, A. H. E.; Lee, J. K. .; Pae, A. N.; Min, S.; Cho. Y.-S.. Org. Lett. 2015, 17,2672.
[39]
(a) Li, C. J. Tetrahedron 1996, 52,5643.
[39]
(b) Alonso, F.; Yus, M. Recent Res. Dev. Org. Chem. 1997, 1,39.
[39]
(c) Ramon, D. J.; Yus, M. Eur. J. Org. Chem. 2000, 2,225.
[39]
(d) Kouznetsov, V. V.; Mendez, L. Y. V. Synthesis 2008,491.
[40]
Kagan, H. B.; Namy, J. L. In Lanthanides: Chemistry and Use in Organic Synthesis , Ed.: Kobayashi, S., Springer, New York, 1999, pp.155~198.
[41]
Tomisaka, Y.; Nomoto, A.; Ogawa, A. Tetrahedron Lett. 2009, 50,584.
[42]
Wang, J.; Gasc. F.; Prandi, J. Eur. J. Org. Chem. 2015, 12,2691.
[43]
Aretz, C. D.; Escobedo, H.; Cowen, B. J. Eur. J. Org. Chem. 2018, 16,1880.
[44]
Garduño-Castroa, H. M.; Procter, D. J. Helv. Chim. Acta 2019, 102,e1900227.
[45]
Sinast, M.; Zuccolo, M.; Wischnat, J.; Sube, T.; Baro, A.; Dallavalle, S.; Laschat, S. J. Org. Chem. 2019, 84,10050.
[46]
Chuang, H.; Isobe, M. Tetrahedron 2017, 73,2705.
[47]
Shelby, N. K. C.; Ellery, P.; Chen, S. J. Angew. Chem. Int. Ed. 2009, 48,7140.
[48]
Just-Baringo, X.; Morrill, C.; Procter, D. J. Tetrahedron 2016, 72,7691.
[49]
Mao, H.; You, B.-X.; Zhou, L.-J.; Xie, T.-T.; Wen, Y.-H.; Lv, X.; Wang, X.-X. Org. Biomol. Chem. 2017, 15,6157.
[50]
Marsch, N.; Jones, P-G.; Lindel, T. Beilstein J. Org. Chem. 2015, 11,1700.
[51]
Kern, N.; Plesniak, P. M.; McDouall, J. J. W.; Procter, D. J. Nat. Chem. 2017, 7,1198.
[52]
Nierman, A.; Reissig, H. Synthesis 2020, 52,2721.
[53]
(a) Banik, B. K. Eur. J. Org. Chem. 2002, 15,2431.
[53]
Zeng, Q.; Li, Z.-C.; He, J.-Q. Chin. J. Org. Chem. 2010, 30,345(in Chinese).
[53]
(曾青, 李祖成, 何家骐, 有机化学, 2010, 30,345.)
[54]
(a) Chen, P.; Zhang, D. Tetrahedron 2014, 70,8505.
[54]
(b) Uladzimir, L. ARKIVOC 2014,307.
[54]
(c) Shu, K.; Masaharu, S.; Hidetoshi, K. Chem. Rev. 2002, 102,2227.
[55]
(a) Gao, X.; Wang, X.; Cai, R. F.; Wei, J.-D.; Wu, S.-H. Acta Chim. Sinica 1993, 51,1139(in Chinese).
[55]
(高翔, 王翔, 蔡瑞芳, 卫景德, 吴世晖, 化学学报, 1993, 51,1139.)
[55]
(b) Yu, M.-X.; Zhang, Y.-M. Chem. J. Chin. Univ. 2003, 24,1618(in Chinese).
[55]
(余明新, 张永敏, 高等学校化学学报, 2003, 24,1618.)
[55]
(c) Li, Z. F.; Gao, X.-J.; Lai, G.-Q. J. Organomet. Chem. 2006, 691,4740.
[56]
Liu, Y.-J.; Zhang, D.-M.; Xiao, S.-H. Asian. J. Org. Chem. 2019, 8,858.
[57]
Li, Y.; Deng, P.; Zeng, Y.-M.; Xiong, Y.; Zhou, H. Org. Lett. 2016, 18,1578.
[58]
Liu, Y.-J.; Tian, G.; Li, J.; Qi, Y. J. Org. Chem. 2017, 82,5932.
[59]
Liu, Y.-J.; Xiao. S.-H.; Qi, Y.; Du, F. Chem. Asian J. 2017, 12,673.
[60]
Wang, X.-X.; Li, J.-Y.; Yuan, T.; Xie, G.-Q.; Lv, X. J. Org. Chem. 2018, 83,8984.
[61]
Li, J.-Y.; Niu, Q. -.; Li, S.-H.; Zhou, Q.; Lv, X.; Wang, X.-X. Tetrahedron Lett. 2017, 58,1250.
[62]
You, B. X.; Shen, M.-M.; Xie, G.-Q.; Mao, H.; Lv, X.; Wang, X.-X. Org. Lett. 2018, 20,530.
[63]
Esumi, N.; Nishimoto, Y.; Yasuda, M. Chem.-Eur. J. 2017,2831.
[64]
Wang, Y.-C.; Li, J.-L.; He, Y.; Xie, Y.-Y.; Wang, H.-S.; Pan, Y.-M. Adv. Synth. Catal. 2015, 357,3229.
[65]
Rakhimova, E.-B.; Ismagilov, R.; Zainullin. R. A.; Khalilov, L.; Ibragimov, A.; Dzhemilev, U. Tetrahedron 2016, 72,8223.
[66]
Yu, S.-M.; Cui, K.; Lv, F.; Yang, Z.-Y.; Yao, Z.-J. Tetrahedron Lett. 2016, 57,2818.
[67]
Liu, Y.-J.; Zhao, H.-M.; Tian, G. RSC Adv. 2016, 6,26317.
[68]
Anthore-Dalion, L.; Benischke, A.D; Wei, B. S.; Berionni, G.; Knochel, P. Angew. Chem. Int. Ed. 2019, 58,4046.
[69]
Thurow, S.; Lenarda?o, E. J.; Just-Baringo, X.; Procter, D. J. Org. Lett. 2017, 19,50.
[70]
Kolmar, S.; Mayer, J. M. J. Am. Chem. Soc. 2017, 139,10687.
[71]
Stockdale, T. F.; Leitch. M. A.; O'Neil, G. W. Synthesis 2020, 52,1544.
[72]
Yokoyama, Y.; Oyamada, S.; Suzuki, J.; Maruyama, S.; Sakusabe, T.; Suzuki, S. Synth. Commun. 2018, 48,1025.
文章导航

/