研究论文

3,6-二烃基咔唑-1-甲醛和3,6-二烃基咔唑-1,8-二甲醛的高效合成

  • 赵雨 ,
  • 刘阳 ,
  • 王鑫鑫 ,
  • 洪莹莹 ,
  • 满英秀 ,
  • 王进军 ,
  • 李家柱
展开
  • a 烟台大学化学化工学院 山东烟台 264005
    b 烟台大学文经学院 食品与生物工程系 山东烟台 264005
† 共同第一作者(These authors contributed equally to this work).

收稿日期: 2021-01-03

  修回日期: 2021-01-26

  网络出版日期: 2021-02-26

基金资助

国家自然科学基金(51472212); 山东省自然科学基金(ZR2015BQ012)

Efficient Synthesis of 3,6-Dialkylcarbazole-1-formaldehyde and 3,6-Dialkylcarbazole-1,8-diformaldehyde

  • Yu Zhao ,
  • Yang Liu ,
  • Xinxin Wang ,
  • Yingying Hong ,
  • Yingxiu Man ,
  • Jinjun Wang ,
  • Jiazhu Li
Expand
  • a College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005
    b Department of Food & Biological Engineering, Wenjing College, Yantai University, Yantai, Shandong 264005
*Corresponding authors.E-mail: ;

Received date: 2021-01-03

  Revised date: 2021-01-26

  Online published: 2021-02-26

Supported by

National Natural Science Foundation of China(51472212); and the Natural Science Foundation of Shandong Province(ZR2015BQ012)

摘要

已报道的咔唑-1-甲醛或咔唑-1,8-二甲醛的合成方法要么合成步骤长, 产率低, 要么试剂毒性较大或者操作具有较大危险性, 严重影响了后续衍生物合成和应用的进展. 在本研究中, 用2-(三甲硅烷基)乙氧甲基氯(SEMCl)保护溴代咔唑9-NH, 成功利用正丁基锂/N,N-二甲基甲酰胺(DMF)代替叔丁基锂/DMF完成甲酰化, 降低了操作的危险性, 获得了一种更安全高效、适合规模化制备的3,6-二烃基咔唑-1-甲醛或1,8-二甲醛的制备方法. 此外, 还对咔唑-1-甲醛或1,8-二甲醛的反应活性进行探索, 成功制备了一系列三齿氮或双齿氮型配体.

本文引用格式

赵雨 , 刘阳 , 王鑫鑫 , 洪莹莹 , 满英秀 , 王进军 , 李家柱 . 3,6-二烃基咔唑-1-甲醛和3,6-二烃基咔唑-1,8-二甲醛的高效合成[J]. 有机化学, 2021 , 41(6) : 2435 -2444 . DOI: 10.6023/cjoc202101001

Abstract

The currently reported synthesis methods of carbazole-1-formaldehyde or carbazole-1,8-diformaldehyde have some drawbacks, such as long synthetic steps with low yield, high toxicity of reagents, or high risk of operation, which affected the progress of synthesis and application of subsequent derivatives. In this work, the 9-NH of bromocarbazole was protected by 2-(trimethylsilyl)ethoxymethyl chloride (SEMCl), the subsequent formylation was successfully accomplished by n-butyllithium/N,N-dimethylformamide (DMF) instead of tert-butyllithium/DMF to reduce the risk of operation process. Finally, a safe and efficient method that is more suitable for large-scale preparation of 3,6-dialkylcarbazole-1-formaldehyde or 1,8-diformaldehyde was developed. In addition, the reactivity of carbazole-1-formaldehyde or 1,8-diformaldehyde was explored, and a series of tridentate or bidentate ligands were successfully prepared.

参考文献

[1]
(a) Li, J.; Han, Y.; Chen, C. Chin. J. Org. Chem. 2020, 40,3714(in Chinese).
[1]
( 李晶, 韩莹, 陈传峰, 有机化学, 2020, 40,3714.)
[1]
(b) Liu, Y.; Zhang, F.; Zou, L.; Jian, J.; Bao, X. Chin. J. Org. Chem. 2013, 33,2485(in Chinese).
[1]
( 刘勇, 张峰, 邹林波, 蹇军友, 鲍小平, 有机化学, 2013, 33,2485.)
[1]
(c) Gupta, I.; Kesavan, P. E. Front. Chem. 2019, 7,841.
[1]
(d) Su, Y.; Lin, H.; Li, W. Prog. Chem. 2015, 27,1384(in Chinese).
[1]
( 苏玉苗, 林海娟, 李文木, 化学进展, 2015, 27,1384.)
[1]
(e) Zhang, L.; Li, M.; Gao, Q.; Chen, C. Chin. J. Org. Chem. 2020, 40,516(in Chinese).
[1]
( 张亮, 李猛, 高庆宇, 陈传峰, 有机化学, 2020, 40,516.)
[1]
(f) Song, W.-Y.; Rao, X.; Bu, Q.; Liu N. Chin. J. Org. Chem. 2020, 40,489(in Chinese).
[1]
( 宋文越, 饶小峰, 卜庆青, 刘宁, 有机化学, 2020, 40,489.)
[1]
(g) Wang, N.; Arulkumar, M.; Chen, X.; Wang, B.; Chen, S.; Yao, C.; Wang, Z. Chin. J. Org. Chem. 2019, 39,2771(in Chinese).
[1]
( 王能, Mani, Arulkumar, 陈孝云, 王柏文, 陈思鸿, 姚辰, 汪朝阳, 有机化学, 2019, 39,2771.)
[2]
(a) Berton, N.; Fabre-Francke, I.; Bourrat, D.; Chandezon, F.; Sadki, S. J. Phys. Chem. B 2009, 113,14087.
[2]
(b) Chmielewski, M. J.; Charon, M.; Jurczak, J. Org. Lett. 2004, 6,3501.
[3]
Chen, W. J.; Zhou, C. X.; Yao, P. F.; Wang, X. X.; Tan, J. H.; Li, D.; Ou, T. M.; Gu, L. Q.; Huang, Z. S. Bioorg. Med. Chem. 2012, 20,2829.
[4]
Hu, L.; Li, Z. R.; Wang, Y. M.; Wu, Y.; Jiang, J. D.; Boykin, D. W. Bioorg. Med. Chem. Lett. 2007, 17,1193.
[5]
Liu, Y.; Nishiura, M.; Wang, Y.; Hou, Z. J. Am. Chem. Soc. 2006, 128,5592.
[6]
Gross, D. E.; Mikkilineni, V.; Lynch, V. M.; Sessler, J. L. Supramol. Chem. 2010, 22,135.
[7]
(a) Qiu, F.; Tu, C.; Chen, Y.; Shi, Y.; Song, L.; Wang, R.; Zhu, X.; Zhu, B.; Yan, D.; Han, T. Chem.-Eur. J . 2010, 16,12710.
[7]
(b) Mahapatra, A. K.; Roy, J.; Sahoo, P.; Mukhopadhyay, S. K.; Chattopadhyay, A. Org. Biomol. Chem. 2012, 10,2231.
[7]
(c) Cai, L.; Lyu, L.; Wang, M.; Wu, Y.; Huang, J.; Zeng, X. Chin. J. Org. Chem. 2018, 38,1126(in Chinese).
[7]
( 蔡柳, 吕柳, 王梦颖, 吴禹胜, 黄锦锋, 曾向潮, 有机化学, 2018, 38,1126.)
[7]
(d) Li, Y.; Yang, K.; Jin, K.; Gao, L.; Sheng, L.; Liu, X.; Yang, H.; Lin, L.; Li, J. Chin. J. Org. Chem. 2020, 40,162(in Chinese).
[7]
( 李英俊, 杨凯栋, 靳焜, 高立信, 盛丽, 刘雪洁, 杨鸿境, 林乐弟, 李佳, 有机化学, 2020, 40,162.)
[8]
(e) Li, Y.; Liu, X.; Liu, J.; Gao, L.; Jin, K.; Sheng, L.; Yang, H.; Lin, L.; Li, J. Chin. J. Org. Chem. 2020, 40,478(in Chinese).
[8]
( 李英俊, 刘雪洁, 刘季红, 高立信, 靳焜, 盛丽, 杨鸿境, 林乐弟, 李佳, 有机化学, 2020, 40,478.)
[9]
Louillat, M.-L.; Patureau, F. W. Org. Lett. 2013, 15,164.
[10]
Park, J. S.; Jin, S.-H.; Gal, Y.-S.; Lee, J. H.; Lee, J. W. Mol. Cryst. Liq. Cryst. 2012, 567,102.
[11]
Maeda, C.; Todaka, T.; Ema, T. Org. Lett. 2015, 17,3090.
[12]
Cheng, C.; Kim, B. G.; Guironnet, D.; Brookhart, M.; Guan, C.; Wang, D. Y.; Krogh-Jespersen, K.; Goldman, A. S. J. Am. Chem. Soc. 2014, 136,6672.
[13]
Sanchez, G.; Espinosa, A.; Curiel, D.; Tarraga, A.; Molina, P. J. Org. Chem. 2013, 78,9725.
[14]
Fuentes de Arriba, A.; Turiel, M. G.; Simon, L.; Sanz, F.; Boyero, J. F.; Muniz, F. M.; Moran, J. R.; Alcazar, V. Org. Biomol. Chem. 2011, 9,8321.
[15]
(a) Britovsek, G. J. P.; Gibson, V. C.; Hoarau, O. D.; Spitzmesser, S. K.; White, A. J. P.; Williams, D. J. Inorg. Chem. 2003, 42,3454.
[15]
(b) Gibson, V. C.; Spitzmesser, S. K.; White, A. J. P.; Williams, D. J. Dalton Trans. 2003, 2003 2718.
[16]
Malthus, S. J.; Wilson, R. K.; Vikas Aggarwal, A.; Cameron, S. A.; Larsen, D. S.; Brooker, S. Dalton Trans. 2017, 46,3141.
[17]
Brown, A. B.; Gibson, T. L.; Baum, J. C.; Ren, T.; Smith, T. M. Sens. Actuators, B 2005, 110,8.
[18]
Dutta, R.; Firmansyah, D.; Yoo, J.; Kumar, R.; Mulugeta, E.; Jo, H.; Ok, K. M.; Lee, C.-H. Bull. Korean Chem. Soc. 2017, 38,1163.
[19]
Takagi, K.; Takao, H.; Nakagawa, T. Polym. J. 2013, 45,396.
[20]
Suzuki, T.; Kinoshita, A.; Kawada, H.; Nakada, M. Synlett 2003,570.
[21]
Malthus, S. J.; Cameron, S. A.; Brooker, S. Inorg. Chem. 2018, 57,2480.
[22]
(a) Mysliwiec, D.; Stepien, M. Angew. Chem. Int. Ed. 2013, 52,1713.
[22]
(b) Das, S.; Herng, T. S.; Zafra, J. L.; Burrezo, P. M.; Kitano, M.; Ishida, M.; Gopalakrishna, T. Y.; Hu, P.; Osuka, A.; Casado, J.; Ding, J.; Casanova, D.; Wu, J. J. Am. Chem. Soc. 2016, 138,7782.
[22]
(c) Li, Z.; Wang, J.; Cao, W.; Zhong, C.; Mei, A.; Fang, M.; Liu, F.; Chen, X. Sci. China Chem. 2016, 46,496.
[22]
(d) Zhang, T.; Qiu, Z.; Cheng, X.; Zhang, Y.; Wang, X. Chin. J. Org. Chem. 2019, 39,2534(in Chinese).
[22]
( 张婷, 邱子夜, 程肖杰, 张雨露, 汪徐春, 有机化学, 2019, 39,2534.)
[23]
Koskinen, A.; Rembiak, A. Synthesis 2015, 47,3347.
[24]
Maeda, C.; Nomoto, S.; Takaishi, K.; Ema, T. Chem.-Eur. J. 2020, 26,13016.
[25]
(a) Maeda, C.; Todaka, T.; Ueda, T.; Ema, T. Chem.-Eur. J. 2016, 22,7508.
[25]
(b) Maeda, C.; Nagahata, K.; Takaishi, K.; Ema, T. Chem. Commun. 2019, 55,3136.
[26]
Bennington, M. S.; Feltham, H. L.; Buxton, Z. J.; White, N. G.; Brooker, S. Dalton Trans. 2017, 46,4696.
文章导航

/