研究论文

含单一芘基冠状共轭分子的合成、表征和光物理性质

  • 李璟奭 ,
  • 庄桂林 ,
  • 黄强 ,
  • 王进义 ,
  • 吴亚宇 ,
  • 杜平武
展开
  • a 中国科学技术大学化学与材料科学学院 合肥 230026
    b 浙江工业大学化学工程学院 杭州 310032

收稿日期: 2020-12-05

  修回日期: 2021-02-08

  网络出版日期: 2021-02-26

基金资助

国家重点研发计划(2017YFA0402800); 国家自然科学基金(21971229); 国家自然科学基金(51925206); 国家自然科学基金(U1932214); 浙江省自然科学基金(LR19B010001)

A Conjugated Molecular Crown Containing a Single Pyrenyl Unit: Synthesis, Characterization, and Photophysical Properties

  • Jingshi Li ,
  • Guilin Zhuang ,
  • Qiang Huang ,
  • Jinyi Wang ,
  • Yayu Wu ,
  • Pingwu Du
Expand
  • a Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026
    b College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032
*Corresponding author.E-mail:

Received date: 2020-12-05

  Revised date: 2021-02-08

  Online published: 2021-02-26

Supported by

National Key Research and Development Program of China(2017YFA0402800); National Natural Science Foundation of China(21971229); National Natural Science Foundation of China(51925206); National Natural Science Foundation of China(U1932214); Zhejiang Provincial Natural Science Foundation(LR19B010001)

摘要

由于独特的结构和物理性质, 大环共轭化合物引起了研究者广泛关注. 报道了含单个芘单元的[7]环对苯基-2,7-芘([7]CPPPy2,7)大环分子的合成方法和光物理性质. 通过含弯曲结构的前驱体和芘的双硼酸酯化底物的Suzuki-Miyanra偶联反应, 加入亚锡酸还原芳构化, 该分子的成功制备被质谱及系列相关核磁共振谱图等表征证实. 新化合物的光物理性质通过紫外-可见光谱等测试方法进一步研究, 其最大紫外吸收峰出现在326 nm, 与理论计算结果相吻合. 在350 nm波长光激发下, 其荧光激发峰值出现在492 nm处. 计算结果表明, 该化合物的应变能为299.17 kJ•mol–1.

本文引用格式

李璟奭 , 庄桂林 , 黄强 , 王进义 , 吴亚宇 , 杜平武 . 含单一芘基冠状共轭分子的合成、表征和光物理性质[J]. 有机化学, 2021 , 41(6) : 2401 -2407 . DOI: 10.6023/cjoc202012011

Abstract

Macrocyclic π-conjugated materials have attracted much attention due to their unique structures and physical properties. The synthetic methods and physical properties of a π-extended molecular crown containing a single pyrenyl unit, cyclo[7]paraphenylene-2,7-pyrenylene ([7]CPPPy 2,7), were report. This macrocycle was achieved by a rationally designed Suzuki-Miyanra coupling of a curved precursor and pyrene-2,7-bis(boronate), followed by reductive aromatization with stannous acid, and confirmed by various physical characterizations, such as HR-MS and a series of NMR spectroscopies. The photophysical properties of [7]CPPPy2,7 were further studied by UV-vis spectroscopy and other analysis, and its maximum absorption peak was located at 326 nm, which was consistant with density functional theory (DFT) calculations. The fluorescence emission spectrum of [7]CPPPy2,7 was further studied. Under 350 nm excitation, the emission peak appeared at 492 nm. The computational result indicates the strain energy of [7]CPPPy2,7 is as high as 299.17 kJ•mol–1.

参考文献

[1]
(a) Iyoda, M.; Yamakawa, J.; Rahman, M. J. Angew. Chem. Int. Ed. 2011, 50,10522.
[1]
(b) Miki, K.; Ohe, K. Chem. Eur. J. 2020, 26,2529.
[2]
(a) Liu, S. H.; Hou, H.; Deng, Z. Y.; Wang, X. R.; Tang, C.; Ju, Y. Y.; Feng, L. B.; Tan, Y. Z. Sci. China Chem. 2020, 63,1626.
[2]
(b) Pun, S. H.; Miao, Q. Chin. J. Org. Chem. 2020, 40,3347(in Chinese).
[2]
(潘世豪, 缪谦, 有机化学, 2020, 40,3347.)
[3]
(a) Rusin, O.; Lang, K.; Kral, V. Chem. Eur. J. 2002, 8,655.
[3]
(b) Sinn, S.; Biedermann, F. Isr. J. Chem. 2018, 58,357.
[4]
(a) Müller, S.; Müllen, K. Philos. T. R. Soc. A 2007, 365,1453.
[4]
(b) Dzyuba, E. V.; Baytekin, B.; Sattler, D.; Schalley, C. A. Eur. J. Org. Chem. 2012, 2012 1171.
[5]
(a) Hanack, M.; Dini, D.; Barthel, M.; Vagin, S. Chem. Rec. 2002, 2,129.
[5]
(b) Raymond, J. E.; Bhaskar, A.; Goodson, T.; Makiuchi, N.; Ogawa, K.; Kobuke, Y. J. Am. Chem. Soc. 2008, 130,17212.
[5]
(c) Carlmark, A.; Malmstrom, E.; Malkoch, M. Chem. Soc. Rev. 2013, 42,5858.
[6]
(a) Xin, P. Y.; Tan, S.; Wang, Y. D.; Sun, Y. H.; Wang, Y.; Xu, Y. Q.; Chen, C. P. Chem. Commun. 2017, 53,625.
[6]
(b) Zheng, S. P.; Huang, L. B.; Sun, Z. H.; Barboiu, M. Angew. Chem. Int. Ed. 2020, 60,566.
[7]
(a) Jasti, R.; Bhattacharjee, J.; Neaton, J. B.; Bertozzi, C. R. J. Am. Chem. Soc. 2008, 130,17646.
[7]
(b) Takaba, H.; Omachi, H.; Yamamoto, Y.; Bouffard, J.; Itami, K. Angew. Chem. Int. Ed. 2009, 48,6112.
[7]
(c) Yamago, S.; Watanabe, Y.; Iwamoto, T. Angew. Chem. Int. Ed. 2010, 49,757.
[8]
(a) Huang, Q.; Zhuang, G. L.; Jia, H. X.; Qian, M. M.; Cui, S. S.; Yang, S. F.; Du, P. W. Angew. Chem. Int. Ed. 2019, 58,6244.
[8]
(b) Wang, J. Y.; Zhuang, G. L.; Huang, Q.; Xiao, Y. F.; Zhou, Y.; Liu, H. Q.; Du, P. W. Chem. Commun. 2019, 55,9456.
[8]
(c) Wu, Y.; Zhuang, G.; Cui, S.; Zhou, Y.; Wang, J.; Huang, Q.; Du, P. Chem. Commun. 2019, 55,14617.
[9]
(a) Guo, L. F.; Yang, X. D.; Cong, H. Chin. J. Chem. 2018, 36,1135.
[9]
(b) Xu, W.; Yang, X. D.; Fan, X. B.; Wang, X.; Tung, C. H.; Wu, L. Z.; Cong, H. Angew. Chem. Int. Ed. 2019, 58,3943.
[10]
Qiu, Z. L.; Tang, C.; Wang, X. R.; Ju, Y. Y.; Chu, K. S.; Deng, Z. Y.; Hou, H.; Liu, Y. M.; Tan, Y. Z. Angew. Chem. Int. Ed. 2020, 59,20868.
[11]
Tang, H.; Gu, Z.; Qiao, C.; Li, Z.; Wu, W.; Jiang, X. CCS Chem. 2020, 2,1851.
[12]
Chen, H.; Gui, S.; Zhang, Y.; Liu, Z.; Miao, Q. CCS Chem. 2020, 2,613.
[13]
Shi, T.-H.; Wang, M.-X. CCS Chem. 2020, 2,916.
[14]
Fan, W.; Han, Y.; Dong, S.; Li, G.; Lu, X.; Wu, J. CCS Chem. 2020, 2,1445.
[15]
(a) Iwamoto, T.; Kayahara, E.; Yasuda, N.; Suzuki, T.; Yamago, S. Angew. Chem. Int. Ed. 2014, 53,6430.
[15]
(b) Yagi, A.; Venkataramana, G.; Segawa, Y.; Itami, K. Chem. Commun. 2014, 50,957.
[16]
Xia, J. L.; Jasti, R. Angew. Chem. Int. Ed. 2012, 51,2474.
[17]
Golder, M. R.; Jasti, R. Acc. Chem. Res. 2015, 48,557.
[18]
Zhao, H. Y.; Ma, Y. C.; Cao, L.; Huang, S. Q.; Zhang, J. P.; Yan, X. Y. J. Org. Chem. 2019, 84,5230.
[19]
(a) Coventry, D. N.; Batsanov, A. S.; Goeta, A. E.; Howard, J. A. K.; Marder, T. B.; Perutz, R. N. Chem. Commun. 2005,2172.
[19]
(b) Crawford, A. G.; Liu, Z. Q.; Mkhalid, I. A. I.; Thibault, M. H.; Schwarz, N.; Alcaraz, G.; Steffen, A.; Collings, J. C.; Batsanov, A. S.; Howard, J. A. K.; Marder, T. B. Chem. Eur. J. 2012, 18,5022.
[20]
Sasaki, S.; Suzuki, S.; Igawa, K.; Morokuma, K.; Konishi, G. J. Org. Chem. 2017, 82,6865.
[21]
Cui, S. S.; Zhuang, G. L.; Lu, D. P.; Huang, Q.; Jia, H. X.; Wang, Y.; Yang, S. F.; Du, P. W. Angew. Chem. Int. Ed. 2018, 57,9330.
[22]
Figueira-Duarte, T. M.; Müllen, K. Chem. Rev. 2011, 111,7260.
[23]
Yang, Y. J.; Xu, L.; Wang, H. Chin. J. Org. Chem. 2020, 40,1658(in Chinese).
[23]
(杨玉杰, 徐莉, 王华, 有机化学, 2020, 40,1658.)
[24]
Sahoo, D.; Narayanaswami, V.; Kay, C. M.; Ryan, R. O. Biochemistry 2000, 39,6594.
[25]
Gaussian 09, Revision A.01 ; Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; Inc; Gaussian, Inc., Wallingford CT, 2009.
[26]
Feher, P. P.; Purgel, M.; Joo, F. Comput. Theor. Chem. 2014, 1045 113.
文章导航

/