综述与进展

杯芳烃促进的过渡金属催化反应

  • 马志艳 ,
  • 李云剑 ,
  • 孙小强 ,
  • 杨科 ,
  • 李正义
展开
  • 常州大学石油化工学院 江苏省绿色催化材料与技术重点实验室 江苏常州 213100
† 共同第一作者

收稿日期: 2020-12-22

  修回日期: 2021-02-04

  网络出版日期: 2021-02-26

基金资助

国家自然科学基金(21572026); 国家自然科学基金(21702019); 江苏省研究生科研与实践创新计划(KYCX20_2525); 江苏省先进催化与绿色制造协同创新中心资助项目

Calixarene Promoted Transition-Metal-Catalyzed Reactions

  • Zhiyan Ma ,
  • Yunjian Li ,
  • Xiao-Qiang Sun ,
  • Ke Yang ,
  • Zheng-Yi Li
Expand
  • Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213100
(These authors contributed equally to this work).
*Corresponding authors.E-mail: ;

Received date: 2020-12-22

  Revised date: 2021-02-04

  Online published: 2021-02-26

Supported by

National Natural Science Foundation of China(21572026); National Natural Science Foundation of China(21702019); Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX20_2525); Advanced Catalysis and Green Manufacturing Collaborative Innovation Center of Jiangsu Province.

摘要

近年来, 过渡金属催化反应已经成为有机化学中构建碳碳键和碳杂原子键的最有效方法之一, 并引起了化学家的极大研究兴趣. 杯芳烃是继冠醚和环糊精之后的第三代超分子主体化合物, 其配位性能一直是超分子化学研究的热点. 通过对其下缘的酚羟基、上缘的苯环对位以及连接苯环单元的亚甲基进行设计改造, 杯芳烃可以有效地作为过渡金属催化剂的配体, 或者与过渡金属正离子组装成为新的过渡金属催化剂, 从而高效地促进反应的进行. 主要介绍了近十年来, 杯芳烃作为不同过渡金属催化剂的配体并用于各种过渡金属催化反应的研究进展.

本文引用格式

马志艳 , 李云剑 , 孙小强 , 杨科 , 李正义 . 杯芳烃促进的过渡金属催化反应[J]. 有机化学, 2021 , 41(6) : 2188 -2201 . DOI: 10.6023/cjoc202012034

Abstract

In recent years, transition metal catalyzed reactions have become one of the most effective methods to construct carbon-carbon bonds and carbon-heteroatom bonds in organic chemistry, and have attracted great research interest among chemists. Calixarene is the third-generation supramolecular host compound after crown ether and cyclodextrin, and its coordination properties have always been a hot spot in supramolecular chemistry. By designing and modifying its phenolic hydroxyl group at the lower edge, the para-position of the benzene ring at the upper edge, and the methylene group connecting the benzene ring unit, calixarene can be used as a transition metal catalyst ligand or assembled with transition metal to form a novel catalyst, both of which can be effectively used to promote the transition metal catalyzed reaction. The research progress of calixarene as a ligand for different transition-metal catalysts and their application in various transition metal catalytic reactions in the past ten years is introduced.

参考文献

[1]
(a) Ouyang, K.; Hao, W.; Zhang, W. X.; Xi, Z. Chem. Rev. 2015, 115,12045.
[1]
(b) Bag, D.; Mahajan, S.; Sawant, S. D. Adv. Synth. Catal. 2020, 362,3948.
[1]
(c) Li, H.; Ren, X. W.; Zhao, W. T.; Tang, X. Y.; Wang, G. W. Chin. J. Org. Chem. 2017, 37,2287(in Chinese).
[1]
( 李桦, 任相伟, 赵温涛, 唐向阳, 王光伟, 有机化学, 2017, 37,2287.)
[2]
(a) Ansari, R. M.; Bhat, B. R. J. Chem. Sci. 2017, 129,1483.
[2]
(b) Li, R. Q.; Xu, H.; Zhao, N.; Jin, X. J.; Dang, Y. F. J. Org. Chem. 2020, 85,833.
[2]
(c) Chen, G. J.; Du, J. S. Chin. J. Org. Chem. 2014, 34,65(in Chinese).
[2]
( 陈国军, 杜建时, 有机化学, 2014, 34,65.)
[2]
(d) Han, F. S. Chem. Soc. Rev. 2013, 42,5270.
[3]
Zhang, Q.; Muhammad, M. T.; Chiou, M. F.; Jiao, Y.; Bao, H.; Li, Y. Org. Lett. 2020, 22,5261.
[4]
(a) Dieleman, C.; Steyer, S.; Jeunesse, C.; Matt, D. J. Chem. Soc., Dalton Trans. 2001, 17,2508.
[4]
(b) Ma, X. T.; Yu, J.; Wang, Z. L.; Zhang, Y.; Zhou, Q. J. Chin. J. Org. Chem. 2020, 40,2669(in Chinese).
[4]
( 马献涛, 于静, 王子龙, 张赟, 周秋菊, 有机化学, 2020, 40,2669.)
[4]
(c) Deng, Y. Y.; Yang, W.; Yang, X.; Yang, D. Q. Chin. J. Org. Chem. 2017, 37,3039(in Chinese).
[4]
( 邓颖颍, 杨文, 杨新, 杨定乔, 有机化学, 2017, 37,3039.)
[4]
(d) Yang, K.; Song, M. J.; Ma, Z. Y.; Li, Y.; Li, Z. Y.; Sun, X. Q. Org. Chem. Front. 2019, 6,3996.
[4]
(e) Yang, K.; Niu, B.; Ma, Z. Y.; Wang, H.; Lawrence, B.; Ge, H. B. J. Org. Chem. 2019, 84,14045.
[5]
(a) Wang, D. H.; Engle, K. M.; Shi, B. F.; Yu, J. Q. Science 2010, 327,315.
[5]
(b) Bras, J. L.; Muzart, J. Chem. Rev. 2011, 111,1170.
[5]
(c) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114,8613.
[6]
(a) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110,1147.
[6]
(b) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112,5879.
[6]
(c) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Chem. Rev. 2015, 115,12138.
[7]
Yang, H.; Yuan, B.; Zhang, X.; Scherman, O. A. Acc. Chem. Res. 2014, 47,2106.
[8]
Delbianco, M.; Bharate, P.; Varela-Aramburu, S.; Seeberger, P. H. Chem. Rev. 2016, 116,1693.
[9]
Dydio, P.; Reek, J. N. H. Chem. Sci. 2014, 5,2135.
[10]
(a) Niu, B.; Yang, K.; Lawrence, B.; Ge, H. B. ChemSusChem 2019, 12,2955.
[10]
(b) Yang, K.; Song, M. J.; Liu, H.; Ge, H. B. Chem. Sci. 2020, 11,12616.
[11]
Gutsche, C. D.; Dhawan, B.; No, K. H.; Mutbukrishnan, R. J. Am. Chem. Soc. 1981, 103,3782.
[12]
Salvio, R.; Volpi, S.; Cacciapaglia, R.; Sansone, F.; Mandolini, L.; Casnati, A. J. Org. Chem. 2016, 81,9012.
[13]
Song, S. F. D.; Shang, X. F.; Zhao, J. L.; Hu, X. J.; Koh, K.; Wang, K. M.; Chen, H. X. Sens. Actuators, B 2018, 267,357.
[14]
(a) Hrdlička, V.; Navrátil, T.; Barek, J.; Ludvík, J. J. Electroanal. Chem. 2018, 821,60.
[14]
(b) Li, L.; Qi, W. G.; Wang, C.; Yan, C. G. Chin. J. Org. Chem. 2013, 33,1804(in Chinese).
[14]
( 李亮, 戚伟光, 王超, 颜朝国, 有机化学, 2013, 33,1804.)
[15]
(a) Li, Z. Y.; Su, H. K.; Tong, H. X.; Yin, Y.; Xiao, T.; Sun, X. Q.; Jiang, J. L.; Wang, L. Y. Spectrochim. Acta, Part A 2018, 200,307.
[15]
(b) Zhang, C. L.; Gong, S. L.; Chen, Y. Y. Chin. J. Org. Chem. 2007, 27,795(in Chinese).
[15]
( 张春雷, 龚淑玲, 陈远荫, 有机化学, 2007, 27,795.)
[15]
(c) Liu, L. L.; Zhang, Z. G.; Li, H. X.; Shang, H.; Lang, J. P. Chin. J. Chem. 2010, 28,1829.
[16]
(a) Wang, Y. X.; Zhang, Y. M.; Liu, Y. J. Am. Chem. Soc. 2015, 137,4543.
[16]
(b) Zhao, B. T.; Zhang, H, Y.; Liu, Y. Chin. J. Org. Chem. 2005, 25,913(in Chinese).
[16]
( 赵邦屯, 张衡益, 刘育, 有机化学, 2005, 25,913.)
[16]
(c) Liu, L. L.; Ren, Z. G.; Zhu, L. W.; Wang, H. F.; Yan, W. Y.; Lang, J. P. Cryst. Growth Des. 2011, 11,3479.
[17]
(a) Li, Z. Y.; Zhou, K.; Lai, Y.; Sun, X. Q.; Wang, L. Chin. J. Org. Chem. 2015, 35,1531(in Chinese).
[17]
( 李正义, 周坤, 来源, 孙小强, 王乐勇, 有机化学, 2015, 35,1531.)
[17]
(b) Liu, L. L.; Ren, Z. G.; Wan, L. M.; Ding, H. Y.; Lang, J. P. CrystEngComm 2011, 13,5718.
[18]
Li, Z. Y.; Chen, Y.; Zheng, C. Q.; Yin, Y.; Wang, L. Y.; Sun, X. Q. Tetrahedron 2017, 73,78.
[19]
(a) Li, Z. Y.; Tong, H. X.; Chen, Y.; Su, H. K.; Xiao, T. X.; Sun, X. Q.; Wang, L. Y. Beilstein J. Org. Chem. 2018, 14,1901.
[19]
(b) Durmaz, M.; Sirit, A. Supramol. Chem. 2013, 25,292.
[19]
(c) Yang, K.; Ma, Z. Y.; Tong, H. X.; Sun, X. Q.; Hu, X. Y.; Li, Z. Y. Chin. Chem. Lett. 2020, 12,3259.
[20]
Chang, M. L.; He, Y.; Zhou, J.; Li, S. Y. Chem. Soc. 2017, 28,1363.
[21]
Li, Z. Y.; Xing, H. J.; Huang, G. L.; Sun, X. Q.; Jiang, J. L.; Wang, L. Y. Sci. China: Chem. 2011, 54,1726.
[22]
(a) Cacciapaglia, R.; Casnati, A.; Mandolini, L.; Reinhoudt, D. N.; Salvio, R.; Sartori, R.; Ungaro, R. J. Am. Chem. Soc. 2006, 128,12322.
[22]
(b) Cacciapaglia, R.; Casnati, A.; Mandolini, L.; Ungaro, R. J. Chem. Soc., Chem. Commun. 1992,1291.
[23]
Tang, W. J.; Zhang, X. M. Chem. Rev. 2003, 103,3029.
[24]
(a) Gramage-Doria, R.; Armspach, D.; Matt, D. Coord. Chem. Rev. 2013, 257,776.
[24]
(b) Homden, D. M.; Redshaw, C. Chem. Rev. 2008, 108,5086.
[25]
(a) Lai, S. W.; Chan, Q. K. W.; Han, J.; Zhi, Y. G.; Zhu, N. Y.; Che, C. M. Organometallics 2009, 28,34.
[25]
(b) Sameni, S.; Lejeune, M.; Jeunesse, C.; Matt, D.; Welter, R. Dalton Trans. 2009, 38,7912.
[26]
Liu, S. S.; Sandoval, C. A. J. Mol. Catal. A: Chem. 2010, 325,65.
[27]
Monnereau, L.; Sémeril, D.; Matt, D. Green Chem. 2010, 12,1670.
[28]
(a) Adint, T. T.; Wong, G. W.; Landis, C. R. J. Org. Chem. 2013, 78,4231.
[28]
(b) Xu, K.; Zheng, X.; Wang, Z. Y.; Zhang, X. M. Chemistry 2014, 20,4357.
[28]
(c) Rovira, L.; Vaquero, M.; Vidal-Ferran, A. J. Org. Chem. 2015, 80,10397.
[29]
Chaudhari, R. V. Top. Catal. 2012, 55,439.
[30]
Natarajan, N.; Pierrevelcin, M. C.; Semeril, D.; Bauder, C.; Matt, D.; Ramesh, R. Catal. Commun. 2019, 118,70.
[31]
Khiri, N.; Bertrand, E.; Ondel-Eymin, M. J.; Rousselin, Y.; Bayardon, J.; Harvey, P. D.; Juge, S. Organometallics 2010, 29,3622.
[32]
Khiri-Meribout, N.; Bertrand, E.; Bayardon, J.; Eymin, M. J.; Rousselin, Y.; Cattey, H.; Fortin, D.; Harvey, P. D.; Juge, S. Organometallics 2013, 32,2827.
[33]
Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95,2457.
[34]
Hirasawa, K.; Tanaka, S.; Horiuchi, T.; Kobayashi, T.; Sato, T.; Morohashi, N.; Hattori, T. Organometallics 2016, 35,420.
[35]
Elaieb, F.; Hedhli, A.; Sémeril, D.; Matt, D. Eur. J. Org. Chem. 2016, 2016 1867.
[36]
Zhang, F.; Chen, M. Z.; Wu, X. T.; Wang, W.; Li, H. X. J. Mater. Chem. A 2014, 2,484.
[37]
Narkhede, N.; Uttam, B.; Rao, C. P. ACS Omega 2019, 4,4908.
[38]
(a) Zhang, Y.; Zhu, P. L.; Chen, L.; Li, G.; Zhou, F. R.; Lu, D. Q.; Sun, R.; Zhou, F.; Wong, C. P. J. Mater. Chem. A 2014, 2,11966.
[38]
(b) Hu, X. W.; Long, Y.; Fan, M. G.; Yuan, M.; Zhao, H.; Ma, J. T.; Dong, Z. P. Appl. Catal., B 2019, 244,25.
[39]
(a) Ramakrishna, D.; Bhat, B. R. Inorg. Chem. Commun. 2011, 14,690.
[39]
(b) Rezaeifard, A.; Jafarpour, M.; Naeimi, A.; Salimi, M. Inorg. Chem. Commun. 2012, 15,230.
[40]
Lane, B. S.; Burgess, K. Chem. Rev. 2003, 103,2457.
[41]
Nehru, K.; Kim, S. J.; Kim, I. Y.; Seo, M. S.; Kim, Y.; Kim, S. J.; Kim, J.; Nam, W. Chem. Commun. 2007,4623.
[42]
Leeladee, P.; Goldberg, D. P. Inorg. Chem. 2010, 49,3083.
[43]
Cavallo, L.; Jacobsen, H. J. Org. Chem. 2003, 68.6202.
[44]
Liu, L. L.; Li, H. X.; Wan, L. M.; Ren, Z. G.; Wang, H. F.; Lang, J. P. Chem. Commun. 2011, 47,11146.
[45]
Bonaccorso, C.; Brancatelli, G.; Ballistreri, F. P.; Geremia, S.; Pappalardo, A.; Tomaselli, G. A.; Toscano, R. M.; Sciotto, D. Dalton. Trans. 2014, 43,2183.
[46]
Sadeghi, F.; Tremblay, A. Y.; Kruczek, B. J. Appl. Polym. Sci. 2008, 109,1454.
[47]
(a) Liu, Q.; Shentu, B.; Gu, C.; Weng, Z. Eur. Polym. J. 2009, 45,1080.
[47]
(b) Kobayashi, S.; Higashimura, H. Prog. Polym. Sci. 2003, 28,1015.
[47]
(c) Villabrille, P.; Romanelli, G.; Vázquez, P.; Cáceres, C. Appl. Catal., A 2008, 334,374.
[48]
Kobayashi, S.; Makino, A. Chem. Rev. 2009, 109,5288.
[49]
(a) Liu, Y. R.; Li, J. P.; Hou, H. W.; Fan, Y. T. J. Organomet. Chem. 2009, 694,2875.
[49]
(b) Liao, B. S.; Liu, Y. H.; Peng, S. M.; Liu, S. T. Dalton Trans. 2012, 41,1158.
[50]
(a) Bae, B.; Kawamura, S.; Miyatake, K.; Watanabe, M. J. Polym. Sci., Part A: Polym. Chem. 2011, 49,3863.
[50]
(b) Liu, Q.; Shentu, B. Q.; Zhu, J. H.; Weng, Z. X. J. Appl. Polym. Sci. 2007, 104,3649.
[51]
Wan, L. M.; Li, H. X.; Zhao, W.; Ding, H. Y.; Fang, Y. Y.; Ni, P. H.; Lang, J. P. J. Polym. Sci.,Part A: Polym. Chem. 2012, 50,4864.
[52]
Patel, R. V.; Panchal, J. G.; Menon, S. K. J. Inclusion Phenom. Macrocyclic Chem. 2010, 67,63.
[53]
Gao, J.; Ren, Z. G.; Lang, J. P. J. Organomet. Chem. 2015, 792,88.
[54]
Baudy, R. B.; Greenblatt, L. P.; Jirkovsky, I. L.; Conklin, M.; Russo, R. J.; Bramlett, D. R.; Emrey, T. A.; Simmonds, J. T.; Kowal, D. M.; Stein, R. P.; Tasse, R. P. J. Med. Chem. 1993, 36,331.
[55]
Lee, S. B.; Park, Y. I.; Dong, M. S.; Gong, Y. D. Bioorg. Med. Chem. Lett. 2010, 20,5900.
[56]
Badran, M. M.; Abouzid, K. A. M.; Hussein, M. H. Arch. Pharm. Res. 2002, 26,107.
[57]
Dailey, S.; Feast, W. J.; Peace, R. J.; Sage, I. C.; Till, S.; Wood, E. L. J. Med. Chem. 2001, 11,2238.
[58]
Schneidenbach, D.; Ammermann, S.; Debeaux, M.; Freund, A.; Zollner, M.; Daniliuc, C.; Jones, P. G.; Kowalsky, W.; Johannes, H. H. Inorg. Chem. 2010, 49,397.
[59]
Gao, J.; Ren, Z. G.; Lang, J. P. Chin. Chem. Lett. 2017, 28,1087.
[60]
Guzmán-Percástegui, E.; Hernández, D. J.; Castillo, I. Chem. Commun. 2016, 52,3111.
[61]
Monnereau, L.; Sémeril, D.; Matt, D.; Gourlaouen, C. Eur. J. Inorg. Chem. 2017, 2017 581.
[62]
Aloui, L.; Abidi, R.; Chetcuti, M. J. Inorg. Chim. Acta 2020, 505,119494.
文章导航

/