无金属条件下叔丁基亚磺酰胺衍生物在B2pin2/D2O体系中的氘代还原
收稿日期: 2020-12-12
修回日期: 2021-03-02
网络出版日期: 2021-03-22
基金资助
国家自然科学基金(21172200); 国家自然科学基金(21702191)
Transition Metal-Free Deuteride Reduction of N-tert-Butanesulfinyl Ketimines Derivatives via B2pin2/D2O System
Received date: 2020-12-12
Revised date: 2021-03-02
Online published: 2021-03-22
Supported by
National Natural Science Foundation of China(21172200); National Natural Science Foundation of China(21702191)
利用廉价易得的氘代试剂D2O作为氘源,在无金属条件下实现了叔丁基亚磺酰胺类衍生物与B2pin2(联硼酸频那醇酯)的氘代还原反应. 通过对碱、溶剂、B2pin2的用量等进行筛选,在较优的反应条件下以中等到较好的收率得到了一系列相应的氘代二级胺. 该方法反应条件温和,操作简单,放大到克级规模也不影响反应收率. 通过脱除N-叔丁基亚磺酰基, 能以较高的收率得到环戊烷-1-d-1-胺.
关键词: 氘代还原; 叔丁基亚磺酰胺类衍生物; 联硼酸频那醇酯; 氘代二级胺
李琳琳 , 陈晓雨 , 裴聪聪 , 李敬亚 , 邹大鹏 , 吴养洁 , 吴豫生 . 无金属条件下叔丁基亚磺酰胺衍生物在B2pin2/D2O体系中的氘代还原[J]. 有机化学, 2021 , 41(6) : 2319 -2325 . DOI: 10.6023/cjoc202012020
A transition metal-free deuteride reduction protocol of N-tert-butanesulfinyl ketimines with B2pin2 has been developed. After screening of reaction parameters, such as base, solvent, and the amount of B2pin2, a series of deuterated secondary amines were obtained in reasonable yields with excellent deuterium purity by using D2O as the deuterium source. Mild reaction conditions, operational simplicity, and easily scaled up to gram scale are the considerable advantages of this methodology. After deprotection of tert-butanesulfinyl, cyclopentan-1-d-amine is obtained in high yield.
[1] | (a) Harbeson, S. L.; Tung, R. D. Annu. Rep. Med. Chem. 2011, 46,403. |
[1] | (b) Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J. Angew. Chem. Int. Ed. 2007, 46,7744. |
[2] | (a) Mutlib, A. E. Chem. Res. Toxicol. 2008, 21,1672. |
[2] | (b) Gant, T. G. J. Med. Chem. 2014, 57,3595. |
[2] | (c) Sanderson, K. Nature 2009, 458,269. |
[2] | (d) Meanwell, N. A. J. Med. Chem. 2011, 54,2529. |
[3] | (a) Bashir, H.; Jankovic, J. Expert Rev. Neuroth. 2018, 18,625. |
[3] | (b) Fang, W.; Gao, X..; Dai, X.; Sheng, Z.; Lu, H. CN 2011/113370, 2008. |
[3] | (c) Pang, X.; Peng, L.; Chen, Y. J. Label Compd. Radiopharm. 2017, 60,401. |
[3] | (d) Maltais, F.; Jung, Y.; Chen, M.; Tanoury, J.; Perni, R. B.; Mani, N.; Laitinen, L.; Huang, H.; Liao, S.; Gao, H.; Tsao, H.; Block, E.; Ma, C.; Shawgo, R. S.; Town, C.; Brummel, C. L.; Howe, D.; Pazhanisamy, S.; Raybuck, S.; Namchuk, M.; Bennani, Y. L. J. Med. Chem. 2009, 52,7993. |
[3] | (e) Schneider, F.; Erisson, L.; Beygi, H.; Bradbury, M.; Cohen- Barak, O.; Grachev, I. D.; Guzy, S.; Loupe, P. S.; Levi, M.; McDonald, M.; Savola, J. M.; Papapetropoulos, S.; Tracewell, W. G.; Velinova, M.; Spiegelstein, O. Br. J. Clin. Pharmacol. 2018, 84,2422. |
[3] | (f) malmlӧf, T.; Rylander, D.; Alken, R. G.; Schneider, F.; Svensson, T. H.; Cenci, M. A.; Schistrӧm, B. Exp. Neurol. 2010, 225,408. |
[3] | (g) Zhu, Y.; Zhou, J.; Jiao, B. ACS Med. Chem. Lett. 2013, 4,349. |
[4] | (a) Simmons, E. M.; Hartwig, J. F. Angew. Chem. Int. Ed. 2012, 51,3066-3072. |
[4] | (b) Quasdorf, K. W.; Huters, A. D.; Lodewyk, M. W.; Tantillo, D. J.; Garg, N. K. J. Am. Chem. Soc. 2012, 134,1396. |
[4] | (c) Seo, S.; Slater, M.; Greaney, M. F. Org. Lett. 2012, 14,2650. |
[5] | Perrin, C. L.; Lau, J. S. J. Am. Chem. Soc. 2006, 128,11820. |
[6] | Zhou, H.; Ranish, J. A.; Watts, J. D.; Aebersold, R. Nat. Biotechnol. 2002, 20,512. |
[7] | (a) Hammerschmidt, F.; Hanbauer, M. J. Org. Chem. 2000, 65,6121. |
[7] | (b) Neubert, L.; Michalik, D.; Bähn, S.; Imm, S.; Neumann, H.; Atzrodt, J.; Derdau, V.; Holla, W.; Beller, M. J. Am. Chem. Soc. 2012, 134,12239. |
[7] | (c) Takahashi, M.; Oshima, K.; Matsubara, S. Chem. Lett. 2005, 34,192. |
[7] | (d) Chatterjee, B.; Krishnakumar, V.; Gunanathan, C. Org. Lett. 2016, 18,5892. |
[8] | Miyazaki, D.; Nomura, K.; Yamashita, T.; Iwakura, I.; Ikeno, T.; Yamada, T. Org. Lett. 2003, 5,3555. |
[9] | Sakamoto, T.; Mori, K.; Akiyama, T. Org. Lett. 2012, 14,3312. |
[10] | Wei, Y.; Zhao, C.; Xuan, Q.; Song, Q. Org. Chem. Front. 2017, 4,2291. |
[11] | Ruiz-Castañeda, M.; Carrión, M. C.; Santos, L.; Manzano, B. R.; Espino, G.; Jalón, F. A. ChemCatChem 2018, 10,5541. |
[12] | Li, B.; Chen, J.; Zhang, Z.; Gridnev, I. D.; Zhang, W. Angew. Chem. Int. Ed. 2019, 58,7329. |
[13] | Liu, Q.; Tian, B.; Tian, P. Tong, X.; Lin, G. Chin. J. Org. Chem. 2015, 35,1(in Chinese). |
[13] | (刘强, 田兵, 田平, 童晓峰, 林国强, 有机化学, 2015, 35,1.) |
[13] | (b) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110,890. |
[13] | (c) Neeve, E. C.; Geier, S. J.; Mkhalid, I. A. I.; Westcott, S. A.; Marde, T. B. Chem. Rev. 2016, 116,9091. |
[13] | (d) Cuenca, A. B.; Shishido, R.; Ito, H.; Fernández, E. Chem. Soc. Rev. 2017, 46,415. |
[13] | (e) Li, C.; Wang, J.; Barton, L. M.; Yu, S.; Tian, M. Q.; Peters, D. S.; Kumar, M.; Yu, A. W.; Johnson, K. A.; Chatterjee, A. K.; Yan, M.; Baran, P. S. Science 2017, 356,eaam7355. |
[13] | (f) Atack, T. C.; Lecker, R. M.; Cook, S. P. J. Am. Chem. Soc. 2014, 136,9521. |
[13] | (g) Yang, C.; Zhang, Z.; Tajuddin, H.; Wu, C.; Liang, J.; Liu, J.; Fu, Y.; Czyzewska, M.; Steel, P. G.; Marder, T. B.; Liu, L. Angew. Chem. Int. Ed. 2012, 51,528. |
[13] | (h) Ito, H.; Kubota, K. Org. Lett. 2012, 14,890. |
[13] | (i) Zhang, Y.; Wang, M.; Cao, P.; Liao, J. Acta Chim. Sinica 2017, 75,794. |
[13] | (j) Huang, H.; Lin, H.; Wang, M.; Liao, J. Acta Chim. Sinica 2020, 78,1229. |
[14] | (a) Xuan, Q.; Zhao, C.; Song, Q. Org. Biomol. Chem. 2017, 15,5140. |
[14] | (b) Xuan, Q..; Song, Q. Org. Lett. 2016, 18,4250. |
[14] | (c) Ojha, D. P.; Gadde, K.; Prabhu, K. R. Org. Lett. 2016, 18,5062. |
[15] | (a) Lu, H.; Geng, Z.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Org. Lett. 2016, 18,2774. |
[15] | (b) Enthaler, S. Catal. Lett. 2012, 142,1306. |
[15] | (c) Xuan, Q.; Kong, W.; Song, Q. J. Org. Chem. 2017, 82,7602. |
[15] | (d) Zhou, X.; Sun, Y.; Wu, Y.; Dai, J.; Xu, J.; Huang, Y.; Xu, H. Tetrahedron. 2016, 72,5691. |
[15] | (e) Kokatla, H. P.; Thomson, P. F.; Bae, S.; Doddi, V. R.; Lakshman, M. K. |J. Org. Chem. 2011, 76,7842. |
[16] | (a) Xie, L.; Duan, Y.; Lu, L.; Li, Y.; Peng, S.; Wu, C.; Liu, K.; Wang, Z.; He, W. ACS Sustainable Chem. Eng. 2017, 5,10407. |
[16] | (b) Wu, C.; Xin, X.; Fu, Z.; Xie, L.; Liu, K.; Wang, Z.; Li, W.; Yuan, Z.; He, W. Green Chem. 2017, 19,1983. |
[16] | (c) Wu, C.; Lu, L.; Peng, A.; Jia, G.; Peng, C.; Cao, Z.; Tang, Z.; He, W.; Xu, X. Green Chem. 2018, 20,3683. |
[16] | (d) Wang, Z.; He, W. Chin. J. Org. Chem. 2019, 39,3594(in Chinese). |
[16] | (王峥, 何卫民, 有机化学, 2019, 39,3594.) |
[16] | (e) Yue, H.; Bao, P.; Wang, L.; Lü, X.; Yang, D.; Wang, H.; Wei, W. Chin. J. Org. Chem. 2019, 39,463(in Chinese). |
[16] | (岳会兰, 鲍鹏丽, 王雷雷, 吕晓霞, 杨道山, 王桦, 魏伟, 有机化学, 2019, 39,463.) |
[16] | (f) Cummings, S. P.; Le, T.; Fernandez, G. E.; Quiambao, L. G.; Stokes, B. J. J. Am. Chem. Soc. 2016, 138,6107. |
[16] | (g) Qiu, H.; Zhang, D.; Liu, S.; Qiu, L.; Zhou, J.; Qian, Y.; Zhai, C.; Hu, W. Acta Chim. Sinica 2012, 70,2484(in Chinese). |
[16] | (邱晃, 张丹, 刘顺英, 邱林, 周俊, 钱宇, 翟昌伟, 胡文浩, 化学学报, 2012, 70,2484.) |
[17] | Geng, Y.; Zhu, M.; Liang, A.; Niu, C.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Org. Biomol. Chem. 2018, 16,1807. |
[18] | (a) Zhang, Y.; Geng, Z.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Adv. Synth. Catal. 2017, 359,390. |
[18] | (b) Zhu, M.; Qiu, Z.; Zhang, Y.; Du, H.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Lett. 2017, 58,2255. |
[18] | (c) Zhi, W.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Lett. 2018, 59,2736-2740. |
[18] | (d) Zhu, M.; Du, H.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Lett. 2018, 59,1352. |
[18] | (e) Zhi, W.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Lett. 2018, 59,537. |
[18] | (f) Qiu, Z.; Zhu, M.; Zheng, L.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Lett. 2019, 60,1321. |
[18] | (g) Liu, X.; Liu, Z.; Guo, Y.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Chin. J. Org. Chem. 2019, 39,2001(in Chinese). |
[18] | (刘雪滢, 刘振伟, 郭圆圆, 李敬亚, 邹大鹏, 吴豫生, 吴养洁, 有机化学, 2019, 39,2001.) |
[19] | Quagliato, D. A.; Andrae, P. M.; Matelan, E. M. J. Org. Chem. 2000, 65,5037. |
[20] | Wu, Y.; Niu, C.; Zou, D.; Zhang, S.; Guo, R.; Li, J. CN 104447739, 2014. |
[21] | Beenen, M. A.; An, C. H.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130,6910. |
/
〈 |
|
〉 |