研究论文

乳酸催化的酰胺与胺的氨解反应

  • 刘巨艳 ,
  • 赵聪颖
展开
  • 天津师范大学化学学院 天津市功能分子结构与性能重点实验室 天津 300387

收稿日期: 2020-10-09

  修回日期: 2020-12-28

  网络出版日期: 2021-03-25

基金资助

天津市自然科学基金(12JCZDJC34300); 大学生创业训练(201447)

Lactic Acid-Catalyzed Transamidation Reactions of Carboxamides with Amines

  • Juyan Liu ,
  • Congying Zhao
Expand
  • Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387
*Corresponding author.E-mail:

Received date: 2020-10-09

  Revised date: 2020-12-28

  Online published: 2021-03-25

Supported by

Natural Science Foundation of Tianjin City(12JCZDJC34300); College Studentsʼ Entrepreneurship Training Program(201447)

摘要

发展了一种对环境友好的乳酸促进的酰胺与胺的氨解的新方法, 该方法能够成功合成一系列芳香、脂肪类酰胺和脲的衍生物. 该方法最显著的特征是催化剂廉价易得、无挥发性溶剂、底物转化率高及产物提纯操作简单.

关键词: 乳酸; 酰胺; ; 氨解

本文引用格式

刘巨艳 , 赵聪颖 . 乳酸催化的酰胺与胺的氨解反应[J]. 有机化学, 2021 , 41(6) : 2310 -2318 . DOI: 10.6023/cjoc202010010

Abstract

An environmentally benign protocol for the transamidation of carboxamides with amines using lactic acid as a green catalyst has been developed. The method has been successfully applied to the synthesis of a wide range of aromatic and aliphatic amides and ureas. The reaction has the advantages of the ready accessibility of the catalyst, solvent-free condition, efficient transformation and green processing.

参考文献

[1]
Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Org. Biomol. Chem. 2006, 4,2337.
[2]
Constable, D. J. C. Green Chem. 2007, 9,411.
[3]
Wildman, S. A.; Crippen, G. M. J. Chem. Inf. Comput. Sci. 1999, 39,868.
[4]
Bhattacharya, S. K.; Andrews, K.; Beveridge, R.; Cameron, K. O.; Chen, C.; Dunn, M.; Fernando, D. P.; Gao, H.; Hepworth, D.; Jackson, V. M.; Khot, V.; Kong, J.; Kosa, R. E.; Lapham, K.; Loria, P. M.; Londregan, A. T.; McClure, K. F.; Orr, S. T. M.; Patel, J.; Rose, C.; Saenz, J.; Stock, I. A.; Storer, G.; Van Volkenburg, M.; Vrieze, D.; Wang, G.; Xiao, J.; Zhang, Y. ACS Med. Chem. Lett. 2014, 5,474.
[5]
McCoull, W.; Barton, P.; Brown, A.; Bowker, S.; Cameron, J.; Clarke, D.; Davies, R.; Dossetter, A.; Ertan, A.; Fenwick, M.; Green, C.; Holmes, J.; Martin, N.; Masters, D.; Moore, J.; Newcombe, N.; Newton, C.; Pointon, H.; Robb, G. R.; Sheldon, C.; Stokes, S.; Morgan, D. J. Med. Chem. 2014, 57,6128.
[6]
(a) Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005, 61,10827.
[6]
(b) Larock, R. C. Comprehensive Organic Transformations, Wiley-VCH, Weinheim, 1999.
[6]
(c) Bailey, P. D.; Collier, I. D.; Morgan, K. M. Comprehensive Organic Functional Group Transformations, Vol. 5, Elsevier, Cambridge, 1995, p.257.
[6]
(d) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38,606.
[6]
(e) Dunetz, J. R.; Magano, J.; Weisenburger, G. A. Org. Process Res. Dev. 2016, 20,140.
[7]
(a) Cossy, J.; Pale-Grosdemange, C. Tetrahedron Lett. 1989, 30,2771.
[7]
(b) Gooben, L. J.; Ohlmann, D. M.; Lange, P. P. Synthesis 2009,160.
[7]
(c) Comerford, J. W.; Clark, J. H.; Macquarrie, D. J.; Breeden, S. W. Chem. Commun. 2009,2562.
[7]
(d) Ishihara, K.; Ohara, S.; Yamamoto, H. J. Org. Chem. 1996, 61,4196.
[7]
(e) Maki, T.; Ishihara, K.; Yamamoto, H. Tetrahedron 2007, 63,8645.
[7]
(f) Arnold, K.; Davies, B.; Herault, D.; Whiting, A. Angew. Chem., nt. Ed. 2008, 47,2673.
[7]
(g) Hosseini-Sarvari, M.; Sodagar, E.; Doroodmand, M. M. J. Org. Chem. 2011, 76,2853.
[7]
(h) Komura, K.; Nakano, Y.; Koketsu, M. Green Chem. 2011, 13,828.
[7]
(i) Ojeda-Porras, A.; Gamba-Sánchez, D. J. Org. Chem. 2016, 81,11548.
[8]
(a) Beste, L. F.; Houtz, R. C. J. Polym. Sci., Part A: Polym. Chem. 1952, 8,395.
[8]
(b) Miller, I. K. J. Polym. Sci., Polym. Chem. Ed. 1976, 14,1403.
[8]
(c) McKinney, R. J. US 5302756, 1994.
[8]
(d) McKinney, R. J. US 5395974, 1995.
[8]
(e) Bon, E.; Bigg, D. C. H.; Bertrand, G. J. Org. Chem. 1994, 59,4035.
[8]
(f) Suggs, J. W.; Pires, R. M. Tetrahedron Lett. 1997, 38,2227.
[9]
(a) Stephenson, N. A.; Zhu, J.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2009, 131,10003.
[9]
(b) Hoerter, J. M.; Otte, K. M.; Gellman, S. H.; Cui, Q.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130,647.
[9]
(c) Kissounko, D. A.; Hoerter, J. M.; Guzei, L. A.; Cui, Q.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2007, 129,1776.
[9]
(d) Hoerter, J. M.; Otte, K. M.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128,5177.
[9]
(e) Kissounko, D. A.; Guzei, L. A.; Gellman, S. H.; Stahl, S. S. Organometallics 2005, 24,5208.
[9]
(f) Eldred, S. E.; Stone, D. A.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2003, 125,3422.
[10]
Dineen, T. A.; Zajac, M. A.; Myers, A. G. J. Am. Chem. Soc. 2006, 128,16406.
[11]
Zhang, M.; Imm, S.; Neubert, B. S. L.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2012, 51,3905.
[12]
Shi, M.; Cui, S. C. Synth. Commun. 2005, 35,2847.
[13]
Tamura, M.; Tonomura, T.; Shimizu, K.; Satsuma, A. Green Chem. 2012, 14,717.
[14]
Becerra-Figueroa, L.; Ojeda-Porras, A.; Gamba-Sa?nchez, D. J. Org. Chem. 2014, 79,4544.
[15]
Pathare, S. P.; Jain, A. K. H.; Akamanchi, K. G. RSC Adv. 2013, 3,7697.
[16]
Ali, M. A.; Siddiki, S. M. A. H.; Kon, K.; Shimizu, K.-I. Tetrahedron Lett. 2014, 55,1316.
[17]
Nguyen, T. B.; Sorres, J.; Tran, M. Q.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2012, 14,3202.
[18]
Allen, C. L.; Atkinson, B. N.; Williams, J. M. J. Angew. Chem., Int. Ed. 2012, 51,1383.
[19]
Wu, J.-W.; Wu, Y.-D.; Dai, J.-J.; Xu, H.-J. Adv. Synth. Catal. 2014, 356,2429.
[20]
(a) Rao, S. N.; Mohan, D. C.; Adimurthy, S. Org. Lett. 2013, 15,1496.
[20]
(b) Yang, X.; Fan, L. L.; Xue, Y. RSC Adv. 2014, 4,30108.
[21]
Nguyen, T. B.; Ermolenko, L.; Dau, M. E. T. H.; Al-Mourabit, A. Heterocycles 2014, 88,403.
[22]
Nageswara, Rao, S.; Chandra, Mohan, D.; Adimurthy, S. Green Chem. 2014, 16,4122.
[23]
Dusselier, M.; Van Wouwe, P.; Dewaele, A.; Makshina, E.; Sels, B. F. Energy Environ. Sci. 2013, 6,1415.
[24]
Maki-Arvela, P.; Simakova, I. L.; Salmi, T.; Murzin, D. Y. Chem. Rev. 2014, 114,1909.
[25]
Li, L.; Fan, E.; Guan, Y.; Zhang, X.; Xue, Q.; Wei, L.; Wu, F.; Chen, R. ACS Sustainable Chem. Eng. 2017, 5,5224.
[26]
Lan, K.; Xu, S.; Li, J.; Hu, C. ACS Omega 2019, 4,10571.
[27]
Han, X.; Li, L.; Wei, C.; Zhang, J.; Bao, J. J. Agric. Food Chem. 2019, 67,7082.
[28]
Lamers, B. A. G.; Genabeek, B.; Hennissen, J.; de Waal, B. F. M.; Palmans, A. R. A.; Meijer, E. W. Macromolecules 2019, 52,1200.
[29]
Yang, J.; Tana, J.-N.; Gu, Y. Green Chem. 2012, 14,3304.
[30]
Fatahpour, M.; Hazeri, N.; Maghsoodlou, M. T.; Lashkari, M. J. Chin. Chem. Soc. 2017, 64,1071.
[31]
(a) Zhao, C. Y.; Liu, J. Y.; Wang, Y.; Zhao, X. J.; Yuan, B.; Yue, M. M. Synth. Commun. 2014, 44,827.
[31]
(b) Yue, M. M.; Liu, J. Y.; Wang, Y.; Yuan, B. Chin. J. Org. Chem. 2014, 34,190(in Chinese).
[31]
(岳闽敏, 刘巨艳, 王英, 袁斌, 有机化学, 2014, 34,190.)
[31]
(c) Zhang, L. J.; Liu, J. Y.; Wang, Y. Chin. J. Org. Chem. 2013, 33,339(in Chinese).
[31]
(张丽君, 刘巨艳, 王英, 有机化学, 2013, 33,339.)
[31]
(d) Huang, H. J.; Liu, J. Y.; Ma, E. Z.; Cao, Y. Y. Chin. J. Org. Chem. 2015, 35,2372(in Chinese).
[31]
(黄海静, 刘巨艳, 马恩忠, 曹映玉, 有机化学, 2015, 35,2372.)
[31]
(e) Liu, J. Y.; Huang, H. J.; Jiao, D. Q. Chin. J. Org. Chem. 2017, 37,1808(in Chinese).
[31]
(刘巨艳, 黄海静, 焦德全, 有机化学, 2017, 37,1808.)
[31]
(f) Fang, Z. X.; Liu, J. Y.; Qiao, Y. H. Chin. J. Org. Chem. 2018, 38,1985(in Chinese).
[31]
(房智兴, 刘巨艳, 乔艳红, 有机化学, 2018, 38,1985.)
[32]
(a) Fuentes de Arriba, A.L.; Seisdedos, D. G.; Simons, L.; Alcazar, V.; Raposo, C.; Moran, J. R. J. Org. Chem. 2010, 75,8303.
[32]
(b) Thomas, M.; Clarhaut, J.; Tranoy-Opalinski, I.; Gesson, J. P.; Roche, J.; Rapot, S. Bioorg. Med. Chem. 2008, 16,8109.
[32]
(c) Willis, M. C.; Snell, R. H.; Fletcher, A. J.; Woodward, R. L. Org. Lett. 2006, 8,5089.
文章导航

/