研究论文

铜咔咯催化烯丙基sp3-C—H键与羧酸的酯化反应

  • 田婉群 ,
  • 李梦媛 ,
  • 杨霜 ,
  • 章浩 ,
  • 刘海洋 ,
  • 肖新颜
展开
  • 华南理工大学化学与化工学院 广东省功能分子工程重点实验室 广州 510641

收稿日期: 2021-01-15

  修回日期: 2021-03-09

  网络出版日期: 2021-03-25

基金资助

国家自然科学基金(21671068); 国家自然科学基金(21878115)

Copper Corrole as an Efficient Catalyst for Esterification of Allylic sp3-C—H Bonds with Carboxylic Acids

  • Wanqun Tian ,
  • Mengyuan Li ,
  • Shuang Yang ,
  • Hao Zhang ,
  • Haiyang Liu ,
  • Xinyan Xiao
Expand
  • Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641
*Corresponding authors. E-mail: ;

Received date: 2021-01-15

  Revised date: 2021-03-09

  Online published: 2021-03-25

Supported by

National Natural Science Foundation of China(21671068); National Natural Science Foundation of China(21878115)

摘要

研究了5,10,15-三(五氟苯基)咔咯铜配合物(CuTPFC)催化的烯丙基sp3杂化C—H键与羧酸的氧化交叉脱氢偶联反应(CDC). 该反应可以平稳地生成烯丙基酯, 且具有广泛的底物范围和良好的官能团耐受性. 克级实验中, 在催化剂的用量仅为0.01 mol%的情况下, 转换量(TON)可以达到5100, 表明目前的催化体系在烯丙基酯合成方面具有潜在的应用前景.

本文引用格式

田婉群 , 李梦媛 , 杨霜 , 章浩 , 刘海洋 , 肖新颜 . 铜咔咯催化烯丙基sp3-C—H键与羧酸的酯化反应[J]. 有机化学, 2021 , 41(7) : 2875 -2884 . DOI: 10.6023/cjoc202101023

Abstract

Copper 5,10,15-tris(pentafluorophenyl)corrole (CuTPFC) catalyzed oxidative cross dehydrogenative coupling (CDC) of allylic sp3-C—H bonds and acids had been investigated in a homogeneous system, which provided allylic esters smoothly. This reaction proceeded with broad substrate scope and good functional group tolerance. In a gram scale test, the turnover number (TON) reached 5100 at only 0.01 mol% catalyst loading, indicating the current catalytic system has potential uses in the allylic esters.

参考文献

[1]
(a) Saito, T.; Fuwa, H.; Sasaki, M. Org. Lett. 2009, 11,5274.
[1]
(b) Kolodziej, H.; Burmeister, A.; Trun, W.; Radtke,O. A.; Kiderlen,A. F.; Ito, H.; Hatano, T.; Yoshida, T.; Foo,L. Y. Bioorg. Med. Chem. 2005, 13,6470.
[1]
(c) Takeuchi, Y.; Shi,Q. W.; Sugiyama, T.; Oritani, T. Biosci. Biotechnol. Biochem. 2002, 66,537.
[1]
(d) Kijjoa, A.; Bessa, J.; Pinto,M. M.; Anatachoke, C.; Silva,A. M.; Eaton, G.; Herz, W. Phytochemistry 2002, 59,543.
[1]
(e) Covell,D. J.; Vermeulen,N. A.; Labenz,N. A.; White,M. C. Angew. Chem.,Int. Ed. 2006, 45,8217.
[1]
(f) Huong,D. T.; Kamperdick, C.; Sung,T. V. J. Nat. Prod. 2004, 67,445.
[2]
(a) Kharasch,M. S.; Sosnovsky, G.; Yang,N. C. J. Am. Chem. Soc. 1959, 81,5819.
[2]
(b) Kharasch,M. S.; Sosnovsky, G. J. Am. Chem. Soc. 1958, 80,756.
[3]
(a) Shi,E. B.; Shao, Y.; Chen,S. L.; Hu,H. Y.; Liu,Z. J.; Zhang, J.; Wan,X. B. Org. Lett. 2012, 14,3384.
[3]
(b) Aakermark, B.; Larsson,E. M.; Oslob,J. D. J. Org. Chem. 1994, 59,5729.
[4]
(a) Ashenhurst,J. A. Chem. Soc. Rev. 2010, 39,540.
[4]
(b) Scheuermann,C. J. Chem.-Asian J. 2010, 5,436.
[4]
(c) Lv, L.; Li, Z. Top. Curr. Chem. 2016, 374,38.
[4]
(d) Li,C. J. Acc. Chem. Res. 2009, 42,335.
[4]
(e) Girard,S. A.; Knauber, T.; Li,C. J. Angew. Chem.,Int. Ed. 2014, 53,74.
[4]
(f) Faisca Phillips, A.M.; Pombeiro, A.J.L. ChemCatChem 2018, 10,3354.
[5]
(a) Young,A. J.; White,M. C. J. Am. Chem. Soc. 2008, 130,14090.
[5]
(b) Su, X.; Surry,D. S.; Spandl,R. J.; Spring,D. R. Org. Lett. 2008, 10,2593.
[5]
(c) Meng, Z.; Sun, S.; Yuan, H.; Lou, H.; Liu, L. Angew. Chem.,Int. Ed. 2014, 53,543.
[5]
(d) Liu,Z. Q.; Zhao, L.; Shang, X.; Cui, Z. Org. Lett. 2012, 14,3218.
[5]
(e) Lin, S.; Song,C. X.; Cai,G. X.; Wang,W. H.; Shi,Z. J. J. Am. Chem. Soc. 2008, 130,12901.
[5]
(f) Li, Z.; Bohle,D. S.; Li,C. J. Proc. Natl. Acad. Sci. U. S. A. 2006, 103,8928.
[5]
(g) Zhao, S.; Yuan, J.; Li,Y. C.; Shi,B. F. Chem. Commun. 2015, 51,12823.
[5]
(h) Zhao, J.; Fang, H.; Zhou, W.; Han, J.; Pan, Y. J. Org. Chem. 2014, 79,3847.
[5]
(i) Tsang,A. S.; Kapat, A.; Schoenebeck, F. J. Am. Chem. Soc. 2016, 138,518.
[5]
(j) Sun, S.; Li, C.; Floreancig,P. E.; Lou, H.; Liu, L. Org. Lett. 2015, 17,1684.
[5]
(k) Liang,Y. F.; Jiao, N. Angew. Chem.,Int. Ed. 2014, 53,548.
[5]
(l) Pan, X.; Liu, X.; Sun, S.; Meng, Z.; Liu, L. Chin. J. Chem. 2018, 36,1187.
[5]
(m) Lu, F.; Yang, Z.; Wang, T.; Wang, T.; Zhang, Y.; Yuan, Y.; Lei, A. Chin. J. Chem. 2019, 37,547.
[5]
(n) Xiao,Y. X.; Liu,Z. Q. Acta Chim. Sinica 2019, 77,874 (in Chinese).
[5]
( 肖莹霞, 柳忠全, 化学学报, 2019, 77,874.)
[6]
Shi, E.; Shao, Y.; Chen, S.; Hu, H.; Liu, Z.; Zhang, J.; Wan, X. Org. Lett. 2012, 14,3384.
[7]
Lu, B.; Zhu, F.; Wang, D.; Sun, H.; Shen, Q. Tetrahedron Lett. 2017, 58,2490.
[8]
Ren,T. -L.; Xu,B. -H.; Mahmood, S.; Sun,M. -X.; Zhang,S. -J. Tetrahedron 2017, 73,2943.
[9]
(a) Wang,C. Y.; Song,R. J.; Wei,W. T.; Fan,J. H.; Li,J. H. Chem. Commun. 2015, 51,2361.
[9]
(b) Tran,B. L.; Driess, M.; Hartwig,J. F. J. Am. Chem. Soc. 2014, 136,17292.
[9]
(c) Zhou, J.; Jin, C.; Li, X.; Su, W. RSC Adv. 2015, 5,7232.
[10]
Garcia-Cabeza,A. L.; Marin-Barrios, R.; Moreno-Dorado,F. J.; Ortega,M. J.; Massanet,G. M.; Guerra,F. M. Org. Lett. 2014, 16,1598.
[11]
(a) Ghosh, A. Chem. Rev. 2017, 117,3798.
[11]
(b) Barata,J. F.B.; Neves,M. G.P.M. S.; Faustino,M. A.F.; Tomé,A. C.; Cavaleiro,J. A.S. Chem. Rev. 2016, 117,3192.
[12]
(a) Ali, A.; Akram, W.; Liu,H. Y. Molecules 2018, 24,78.
[12]
(b) Huang,L. -T.; Ali, A.; Wang,H. -H.; Cheng, F.; Liu,H. -Y. J. Mol. Catal. A: Chem. 2017, 426,213.
[13]
(a) Chen,T. H.; Kwong,K. W.; Lee,N. F.; Ranburger, D.; Zhang, R. Inorg. Chim. Acta 2016, 451,65.
[13]
(b) Ranburger, D.; Willis, B.; Kash, B.; Jeddi, H.; Alcantar, C.; Zhang, R. Inorg. Chim. Acta 2019, 487,41.
[14]
Sacramento,J. J.D.; Goldberg,D. P. Acc. Chem. Res. 2018, 51,2641.
[15]
(a) Li, P.; Cao, Z. Organometallics 2018, 37,406.
[15]
(b) Tiffner, M.; Gonglach, S.; Haas, M.; Schofberger, W.; Waser, M. Chem. Asian J. 2017, 12,1048.
[16]
Zhan, X.; Kolanu, S.; Fite, S.; Chen,Q. C.; Lee, W.; Churchill,D. G.; Gross, Z. Photochem. Photobiol. Sci. 2020, 19,996.
[17]
Nayak, M.; Nayak, P.; Sahu, K.; Kar, S. J. Org. Chem. 2020, 85,11654.
[18]
Lai,J. -W.; Liu,Z. -Y.; Chen,X. -Y.; Zhang, H.; Liu,H. -Y. Tetrahedron Lett. 2020,61.
[19]
Schaffer, R.; Isbell,H. S. J. Am. Chem. Soc. 1958, 80,756.
[20]
Mayoral,J. A.; Rodriguez-Rodriguez, S.; Salvatella, L. Chem.-Eur. J. 2008, 14,9274.
[21]
Koszarna, B.; Gryko,D. T. J. Org. Chem. 2006, 71,3707.
[22]
(a) Luobeznova, I.; Simkhovich, L.; Goldberg, I.; Gross, Z. Eur. J. Inorg. Chem. 2004, 2004,1724.
[22]
(b) Chen, Y.; Fan,Q. -H.; Hossain,M. S.; Zhan,S. -Z.; Liu,H. -Y.; Si,L. -P. Eur. J. Inorg. Chem. 2020, 2020,491.
[23]
Li, J.; Jia, X.; Deng, H.; Li, C.; Jin, T.; Li, C. Synlett 2018, 29,840.
[24]
Liu, G.; Jin, C.; Wu, G. Synlett 2014, 25,2908.
[25]
Wright,B. J.; Hartung, J.; Peng, F.; Van de Water, R.; Liu, H.; Tan,Q. H.; Chou,T. C.; Danishefsky,S. J. J. Am. Chem. Soc. 2008, 130,16786.
[26]
Werkhoven,T. M.; Siebum,A. H.G.; Lugtenburg, J. Eur. J. Org. Chem. 2000, 2000,2113.
[27]
Tanaka, S.; Nakashima, T.; Satou, N.; Oono, H.; Kon, Y.; Tamura, M.; Sato, K. Tetrahedron Lett. 2019, 60,2009.
[28]
Sedighi, M.; Calimsiz, S.; Lipton,M. A. J. Org. Chem. 2006, 71,9517.
[29]
Mamone, P.; Grunberg,M. F.; Fromm, A.; Khan,B. A.; Goossen,L. J. Org. Lett. 2012, 14,3716.
[30]
Lim, S.; Ji, M.; Wang, X.; Lee, C.; Jang,H. -Y. Eur. J. Org. Chem. 2015, 2015,591.
[31]
Whittaker,A. M.; Lalic, G. Org. Lett. 2013, 15,1112.
文章导航

/