研究论文

分子间卤键控制的氢键芳香酰胺折叠体组装

  • 许艳艳 ,
  • 刘传志 ,
  • 王辉 ,
  • 张丹维 ,
  • 黎占亭
展开
  • a 复旦大学化学系 上海市分子催化和功能材料重点实验室 上海 200438
    b 商丘师范学院化学系 河南商丘 476000

收稿日期: 2021-02-02

  修回日期: 2021-03-05

  网络出版日期: 2021-03-25

基金资助

国家自然科学基金(21772026); 国家自然科学基金(21890732); 国家自然科学基金(21890730)

Intermolecular Halogen Bonding-Controlled Self-Assembly of Hydrogen Bonded Aromatic Amide Foldamers

  • Yanyan Xu ,
  • Chuanzhi Liu ,
  • Hui Wang ,
  • Danwei Zhang ,
  • Zhanting Li
Expand
  • a Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Shanghai 200438
    b Department of Chemistry, Shangqiu Normal University, Shangqiu, Henan 476000
* Corresponding authors. E-mail: ;

Received date: 2021-02-02

  Revised date: 2021-03-05

  Online published: 2021-03-25

Supported by

National Natural Science Foundation of China(21772026); National Natural Science Foundation of China(21890732); National Natural Science Foundation of China(21890730)

摘要

报道了六个分子内氢键诱导的芳香酰胺折叠体的合成, 其多步合成中最后一步都通过形成腙键完成. 所有分子的两端都引入三氟一碘代苯作为卤键供体及吡啶作为卤键受体. 分子间形成的I…N卤键及其它卤键被用于调控折叠体骨架在固体中的自组装结构. 晶体结构揭示, 分子间卤键可以诱导不同分子形成扩展的之字形阵列, 二聚体大环和超分子螺旋结构. 当分子两端的卤键供体和受体平行排列时, 折叠体倾向于形成超分子二聚体大环. 长的四聚体和五聚体折叠结构两端的卤键供体和受体形成大的夹角, 展示出不同的卤键模式. 两个分子的端位碘原子与甲醇或水形成I…O卤键, 其中一个五聚体分子与甲醇通过卤键形成超分子单股螺旋结构. 另一个五聚体通过分子间I…O=C卤键形成另一种超分子单股螺旋. 两个单股螺旋进一步相互堆积, 形成新的超分子双股螺旋阵列.

本文引用格式

许艳艳 , 刘传志 , 王辉 , 张丹维 , 黎占亭 . 分子间卤键控制的氢键芳香酰胺折叠体组装[J]. 有机化学, 2021 , 41(7) : 2848 -2860 . DOI: 10.6023/cjoc202102012

Abstract

Six intramolecular hydrogen bonding-induced aromatic amide foldamers have been prepared through the formation of the hydrazone bond in the last step. The compounds are attached with one trifluoroiodobenzene as halogen donor and one pyridine ring as halogen bonding acceptor. Intermolecular I…N halogen bond formed by the above two units and other kinds of halogen bonds are designed to modulate the stacking of the compounds in the solid state. It is revealed that intermolecular halogen bonding can induce the molecules to form extended zigzag arrays, dimeric macrocycles or supramolecular helices. The formation of the dimeric macrocycles is favored when the halogen bond donor and acceptor are located in a parallel manner. Longer tetrameric and pentameric sequences give rise to more curved, crescent conformations, with the two halogen bonding donor and acceptor on the ends to form a large angle. For two compounds, polar methanol or water prevents the formation of the intermolecular end-to-end halogen bonding by forming I…O halogen bonding. The pentameric compound is connected by methanol to form supramolecular single helices. For another pentameric compound, strong I…O=C halogen bonding is found to induce the backbone to self-assemble into supramolecular single helices. The single helices further stack to afford supramolecular double helix arrays.

参考文献

[1]
(a) Huc, I. Eur. J. Org. Chem. 2004,17.
[1]
(b) Gong, B. Sci. China Chem. 2010, 53,45.
[1]
(c) Gan, Q.; Wang, Y.; Jiang, H. Curr. Org. Chem. 2011, 15,1293.
[1]
(d) Zhang,D. -W.; Zhao, X.; Hou,J. -L.; Li,Z. -T. Chem. Rev. 2012, 112,5271.
[1]
(e) Yamato, K.; Kline, M.; Gong, B. Chem. Commun. 2012, 48,12142.
[1]
(f) Zhang,D. -W.; Zhao, X.; Li,Z. -T. Acc. Chem. Res. 2014, 47,1961.
[1]
(g) Huo, Y.; Zeng, H. Acc. Chem. Res. 2016, 49,922.
[1]
(h) Zhang,D. -W.; Wang, H.; Li,Z. -T. Prog. Chem. 2020, 32,1665 (in Chinese).
[1]
( 张丹维, 王辉, 黎占亭, 化学进展, Prog. Chem. 2020, 32,1665.)
[2]
(a) Hou,J. -L.; Shao,X. -B.; Chen,G. -J.; Zhou,Y. -X.; Jiang,X. -K.; Li,Z. -T. J. Am. Chem. Soc. 2004, 126,12386.
[2]
(b) Wang, Y.; Xiang, J.; Jiang, H. Chem.-Eur. J. 2011, 17,613.
[2]
(c) Lautrette, G.; Aube, C.; Ferrand, Y.; Pipelier, M.; Blot, V.; Thobie, C.; Kauffmann, B.; Dubreuil, D.; Huc, I. Chem.-Eur. J. 2014, 20,1547.
[2]
(d) Seo,S. B.; Lee, S.; Jeon,H. -G.; Jeong,K. -S. Angew. Chem. Int. Ed. 2020, 59,10441.
[3]
(a) Li, X.; Wu,Y. -D.; Yang, D. Acc. Chem. Res. 2008, 41,1428.
[3]
(b) Shang, J.; Si, W.; Zhao, W.; Che, Y.; Hou,J. -L.; Jiang, H. Org. Lett. 2014, 16,4008.
[3]
(c) Xin, P.; Zhu, P.; Su, P.; Hou,J. -L.; Li,Z. -T. J. Am. Chem. Soc. 2014, 136,13078.
[3]
(d) Qi, S.; Zhang, C.; Yan, T.; Yang, F.; Zhang, J.; Mao, S.; Dong, Z. Macromol. Rapid Commun. 2020, 41,2000099.
[3]
(e) Shen, J.; Fan, J.; Ye, R.; Li, N.; Mu, Y.; Zeng, H. Angew. Chem. Int. Ed. 2020, 59,13328.
[3]
(f) Bai, D.; Wang, S.; Wang, Y.; Fu, J.; Fang, X.; Zhu, J.; Yan, T.; Liu, J. Angew. Chem. Int. Ed. 2020, 59,13602.
[4]
(a) Srinivas, K.; Kauffmann, B.; Dolain, C.; Leger,J. -M.; Ghosez, L.; Huc, Ivan J. Am. Chem. Soc. 2008, 130,13210.
[4]
(b) Yi,H. -P.; Wu, J.; Ding,K. -L.; Jiang,X. -K.; Li,Z. -T. J. Org. Chem. 2007, 72,870.
[4]
(c) Zhao, H.; Shen, J.; Ren, C.; Zeng, W.; Zeng, H. Org. Lett. 2017, 19,2190.
[5]
(a) Cai, W.; Wang,G. -T.; Du, P.; Wang,R. -X.; Jiang,X. -K.; Li,Z. -T. J. Am. Chem. Soc. 2008, 130,13450.
[5]
(b) Yan, Y.; Qin, B.; Ren, C.; Chen, X.; Yip,Y. K.; Ye, R.; Zhang, D.; Su, H.; Zeng, H. J. Am. Chem. Soc. 2010, 132,5869.
[5]
(c) Liu,C. -Z.; Yan, M.; Wang, H.; Zhang,D. -W.; Li,Z. -T. ACS Omega 2018, 3,5165.
[6]
Chen, F.; Shen, J.; Li, N.; Roy, A.; Ye, R.; Ren, C.; Zeng, H. Angew. Chem. Int. Ed. 2020, 59,1440.
[7]
(a) Liu,C. -Z.; Koppireddi, S.; Wang, H.; Zhang,D. -W.; Li,Z. -T. Angew. Chem. Int. Ed. 2019, 58,226.
[7]
(b) Liu,C. -Z.; Koppireddi, S.; Wang, H.; Zhang,D. -W.; Li,Z. -T. Chin. Chem. Lett. 2019, 30,953.
[7]
(c) Koppireddi, S.; Liu,C. -Z.; Wang, H.; Zhang,D. -W.; Li,Z. -T. CrystEngComm 2019, 21,2626.
[8]
(a) Aakeröy,C. B.; Champness,N. R.; Janiak, C. CrystEngComm 2010, 12,22.
[8]
(b) Politzer, P.; Murray,J. S. ChemPhysChem 2013, 14,278.
[8]
(c) Xiao, T.; Zhou, L.; Sun,X. -Q.; Huang, F.; Lin, C.; Wang, L. Chin. Chem. Lett. 2020, 31,1.
[8]
(d) Saha, S.; Mishra,M. K.; Reddy,C. M.; Desiraju,G. R. Acc. Chem. Res. 2018, 51,2957.
[8]
(e) Wang, B.; Lin,R. -B.; Zhang, Z.; Xiang, S.; Chen, B. J. Am. Chem. Soc. 2020, 142,14399.
[8]
(f) Li, Q.; Li, Z. Acc. Chem. Res. 2020, 53,962.
[8]
(g) Tian, J.; Chen, S.; Wang, X.; Li, J. Chem. Res. Chin. Univ. 2020, 36,151.
[8]
(h) Ding, L.; Wang,Z. -Y.; Wang,J. -Y.; Pei, J. Chin. J. Chem. 2020, 38,13.
[8]
(i) Zhu,Z. -H.; Wang,H. -L.; Zou,H. -H.; Liang,F. -P. Dalton Trans. 2020, 49,10708.
[9]
(a) Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Acc. Chem. Res. 2005, 38,386.
[9]
(b) Wang, H.; Wang, W.; Jin,W. J. Chem. Rev. 2016, 116,5072.
[9]
(c) Xiao, L.; Fu, H. Chem.-Eur. J. 2019, 25,714.
[9]
(d) Liu, C.; Wang, H.; Zhang, D.; Zhao, X.; Li, Z. Chin. J. Org. Chem. 2019, 39,28 (in Chinese).
[9]
( 刘传志, 王辉, 张丹维, 黎占亭, 有机化学, 2019, 39,28.)
[9]
(e) Wang, W.; Zhang, Y.; Jin,W. J. Coord. Chem. Rev. 2020, 404,213107.
[9]
(f) Chen, S.; Yin, H.; Wu,J. -J.; Lin, H.; Wang,X. -D. Sci. China Mater. 2020, 63,1613.
[10]
(a) Su, X.; Aprahamian, I. Chem. Soc. Rev. 2014, 43,1963.
[10]
(b) Zhang, D.; Wang, H.; Li, Z. Chem. J. Chin. Univ. 2020, 41,1139 (in Chinese).
[10]
( 张丹维, 王辉, 黎占亭, 高等学校化学学报, 2020, 41,1139.)
[10]
(c) Yang, B.; Wang, H.; Zhang,D. -W.; Li,Z. -T. Chin. J. Chem. 2020, 38,970.
[10]
(d) Jiao, T.; Wu, G.; Zhang, Y.; Shen, L.; Lei, Y.; Wang,C. -Y.; Fahrenbach,A. C.; Li, H. Angew. Chem. Int. Ed. 2020, 59,18350.
[11]
(a) Jiang, H.; Léger,J. -M.; Huc, I. J. Am. Chem. Soc. 2003, 125,3448.
[11]
(b) Zhang, A.; Ferguson,J. S.; Yamato, K.; Zheng, C.; Gong, B. Org. Lett. 2006, 8,5117.
[12]
(a) Li, C.; Ren,S. -F.; Hou,J. -L.; Yi,H. -P.; Zhu,S. -Z.; Jiang,X. -K.; Li,Z. -T. Angew. Chem. Int. Ed. 2005, 44,5725.
[12]
(b) Chopra, D. Cryst. Growth Design 2012, 12,541.
[12]
(c) Chopra, D.; Row,T. N.G. CrystEngComm 2011, 13,2175.
[13]
Isshiki, Y.; Kohchi, Y.; Iikura, H.; Matsubara, Y.; Asoh, K.; Murata, T.; Kohchi, M.; Mizuguchi, E.; Tsujii, S.; Hattori, K.; Miura, T.; Yoshimura, Y.; Aida, S.; Miwa, M.; Saitoh, R.; Murao, N.; Okabe, H.; Belunis, C.; Janson, C.; Lukacs, C.; Schuck, V.; Shimma, N. Bioorg. Med. Chem. Lett. 2011, 21,1795.
[14]
(a) Currie, M.; Speakman,J. C.; Curry,N. A. J. Chem. Soc. A 1967,1862.
[14]
(b) Shukla, R.; Chopra, D. Phys. Chem. Chem. Phys. 2016, 18,29946.
[15]
Ni,T. W.; Tofanelli,M. A.; Ackerson,C. J. Front. Nanosc. 2015, 9, 2015,103.
文章导航

/