研究论文

高选择性快速检测Cu2+的水杨酰腙型探针的合成及在逻辑门和吸附中的应用

  • 何佳伟 ,
  • 解正峰 ,
  • 薛松松 ,
  • 刘宇程 ,
  • 石伟 ,
  • 陈鑫
展开
  • a 西南石油大学化学化工学院 油气田应用化学四川省重点实验室 成都 610500
    b 西南石油大学工业危废处置与资源化利用研究院 成都 610500
    c 西南石油大学化学化工学院 计算化学与分子模拟中心 成都 610500

收稿日期: 2021-02-02

  修回日期: 2021-03-10

  网络出版日期: 2021-03-25

基金资助

四川省青年科技创新研究团队(2020JDTD0018)

Synthesis of Salicylhydrazone Probe with High Selectivity and Rapid Detection Cu2+ and Its Application in Logic Gate and Adsorption

  • Jiawei He ,
  • Zhengfeng Xie ,
  • Songsong Xue ,
  • Yucheng Liu ,
  • Wei Shi ,
  • Xin Chen
Expand
  • a Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500
    b Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500
    c Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500
*Corresponding authors. E-mail: ;

Received date: 2021-02-02

  Revised date: 2021-03-10

  Online published: 2021-03-25

Supported by

Sichuan Youth Science and Technology Innovation Research Team Project(2020JDTD0018)

摘要

以4-溴代三苯胺、5-甲醛基呋喃-2-硼酸和水杨酰肼为原料, 设计合成了一种新型的可快速识别Cu2+的席夫碱类荧光探针分子(HJW-2), 并通过1H NMR,13C NMR和HR-MS对其结构进行了表征. 基于分子内电荷转移机理(ICT),HJW-2展现出优异的溶剂效应, 对Cu2+具有快速识别、高选择性和专一性, 检测限低至9.8×10–8 mol•L–1, 响应时间仅需10 s, 通过1H NMR滴定实验和HRMS以及密度泛函理论计算, 对其可能的响应机理进行了探究. HJW-2已成功用于分析不同水样中的Cu2+浓度, 并且利用HJW-2在乙二胺四乙酸(EDTA)存在时的可逆性, 以Cu2+和EDTA为化学输入, 构建了分子逻辑门. 在实际应用中, 通过聚丙烯酰胺(PAM)掺杂HJW-2 (PAM-HJW-2)能实现对Cu2+的高效吸附, 去除率达到99.94%, 并通过扫描电子显微镜(SEM)和X光微区分析(EDS)对PAM-HJW-2吸附前后的微观形貌和元素变化进行了对比.

本文引用格式

何佳伟 , 解正峰 , 薛松松 , 刘宇程 , 石伟 , 陈鑫 . 高选择性快速检测Cu2+的水杨酰腙型探针的合成及在逻辑门和吸附中的应用[J]. 有机化学, 2021 , 41(7) : 2839 -2847 . DOI: 10.6023/cjoc202102013

Abstract

A novel Schiff base fluorescent probe (HJW-2) was designed and synthesized from 3-bromo-N,N-diphenylaniline, 5-formaldehyde-furan-2-boric acid and 2-hydroxybenzohydrazide. The structure of the probe molecule was confirmed by1H NMR,13C NMR and HRMS. Based on the mechanism of intra-molecular charge transfer (ICT),HJW-2 shows excellent solvent effect.HJW-2 displayed efficiency, high selectivity, and specificity in the detection of Cu2+. The detection limit of HJW-2 on Cu2+ is as low as 9.8×10–8 mol•L–1, and the response time is only 10 s. The possible mechanism was studied by1H NMR, HRMS and density functional theory (DFT) calculations.HJW-2 has been successfully used to analyze the content of Cu2+ in different water samples. Further, by utilizing the reversibility of HJW-2 in the presence of ethylene diamine tetraaccetic acid, the molecular logic gate is constructed with Cu2+ and EDTA as chemical inputs. Then, polyacrylamide (PAM) doping with HJW-2 (PAM-HJW-2) had high adsorption for Cu2+ and the removal rate was 99.94%. The micro-morphology of PAM-HJW-2 before and after adsorption was observed by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS)

参考文献

[1]
Fang, R.; Ding, X.; Luo, W.; Hong, C. Chin. J. Org. Chem. 2020, 40,2949 (in Chinese).
[1]
( 房茹, 丁旭, 罗稳, 洪琛, 有机化学, 2020, 40,2949.)
[2]
Zhou, Z.; Tang, H.; Chen, S.; Huang, Y.; Zhu, X.; Li, H.; Zhang, Y.; Yao, S. Food Chem. 2021, 343,128513.
[3]
Ren, M.; Xu, Q.; Bai, Y.; Wang, S.; Kong, F. Spectrochim. Acta,Part A 2021, 249,119299.
[4]
Ni, H.; Wang, Q.; Jin, L.; Wang, W.; Dai L.; Zhao, C. J. Lumin. 2019, 206,125.
[5]
He, G.; Liu, X.; Xu, J.; Ji, L.; Yang, L.; Fan, A.; Wang, S.; Wang, Q. Spectrochim. Acta,Part A 2018, 190,116.
[6]
Lei, M.; Zhou, Q.; Yang, L.; Xu, Z.; Yang, F. Chin. J. Org. Chem. 2020, 40,2798 (in Chinese).
[6]
( 雷萌萌, 周起航, 杨莉, 许志红, 杨风岭, 有机化学, 2020, 40,2798.)
[7]
Zhang, C.; Fan, C.; Pu, S.; Liu, G. Chin. J. Chem. 2015, 33,1310.
[8]
Cui, L.; Zhou, D.; Li, M. Acta Phys.-Chim. Sin. 2013, 29,745 (in Chinese).
[8]
( 崔俐丽, 周丹红, 李苗苗, 物理化学学报, 2013, 29,745.)
[9]
Lal, S.; Prakash, K.; Hooda, S.; Kumar, V.; Kumar, P. J. Mol. Struct. 2020, 1199,127003.
[10]
Singh, N.; Paknikar,K. M.; Rajwade, J. Environ. Res. 2019, 175,367.
[11]
Hanif, M.; Rafiq, M.; Saleem, M.; Mustaqeem, M.; Jamil, S. J. Chin. Chem. Soc. 2018, 66,500.
[12]
Fu, Y.; Pang, X.; Wang, Z.; Chai, Q.; Ye, F. Spectrochim. Acta,Part A 2019, 208,198.
[13]
Ogunkunle,C. O.; Jimoh,M. A.; Asogwa,N. T.; Viswanathan, K.; Vishwakarma, V.; Fatoba,P. O. Ecotoxicol. Environ. Saf. 2018, 155,86.
[14]
Yang, L.; Su, Y.; Geng, Y.; Xiong, H.; Han, J.; Fang, Q.; Song, X. Org. Biomol. Chem. 2018, 16,5036.
[15]
Wang, H.; Zhang, P.; Chen, J.; Li, Y.; Yu, M.; Long, Y.; Yi, P. Sens. Actuators, B 2017, 242,818.
[16]
Wang, Y.; Lin, L.; Liu, J.; Mao, X.; Wang, J.; Qin, D. Analyst 2016, 141,1530.
[17]
Huang, X.; Lu, Z.; Wang, Z.; Fan, C.; Fan, W.; Shi, X.; Zhang, H.; Pei, M. Dyes Pigm. 2016, 128,33.
[18]
Wanichacheva, N.; Prapawattanapol, N.; Sanghiran, V.; Grudpan, K.; Petsom, A. J. Lumin. 2013, 134,686.
[19]
Wei, M.; Zhang, Y.; Li, H.; Yao, S. Anal. Methods 2017, 9,3956.
[20]
Zhang, X.; Chen, Y.; Cai, X.; Liu, C.; Jia,P. Z.; Li, L.; Zhu, H.; Yu, Y.; Wang, K.; Li, X.; Sheng, W.; Zhu, B. Dyes Pigm. 2020, 174,108065.
[21]
Park,S. H.; Kwon, N.; Lee,J. H.; Yoon, J.; Shin, I. Chem. Soc. Rev. 2020, 49,143.
[22]
Jiao, X.; Liu, C.; He, S.; Zhao, L.; Zeng, X. Dyes Pigm. 2019, 160,86.
[23]
Chowdhury, S.; Rooj, B.; Dutta, A.; Mandal, U. J. Fluoresc. 2018, 28,999.
[24]
Wang, S.; Li, C.; Li, J.; Chen, B.; Guo, Y. Acta Chim. Sinica 2017, 75,383 (in Chinese).
[24]
( 王少静, 李长伟, 李锦, 陈邦, 郭媛, 化学学报, 2017, 75,383.)
[25]
Mu,Y. -L.; Zhang,C. -J.; Gao,Z. -L.; Zhang, X.; Lu, Q.; Yao, J.; Xing, S. Synth. Met. 2020, 262,116334.
[26]
Shi, F.; Cui,S. Q.; Liu,H. L.; Pu,S. Z. Dyes Pigm. 2020, 173,107914.
[27]
Chen, H.; Yang, P.; Li,Y. H.; Zhang,L. L.; Ding, F.; He,X. J.; Shen,J. L. Spectrochim. Acta,Part A 2020, 224,117384.
[28]
Zhang,Z. X.; Li, F.; He,C. Y.; Ma,H. W.; Feng,Y. T.; Zhang,Y. N.; Zhang, M. Sens. Actuators,B 2018, 255,1878.
[29]
Xiao,H. B.; Zhang,Y. Z.; Li,S. Z.; Zhang, W.; Han,Z. Y.; Tan,J. J.; Zhang,S. Y.; Du,J. Y. Sens. Actuators,B 2016, 236,233.
[30]
Chen, S.; Chen, Q.; Luo, S.; Cao, X.; Yang, G.; Zeng, X.; Wang, Z. Chin. J. Org. Chem. 2021, 41,919 (in Chinese).
[30]
( 陈思鸿, 陈淇, 罗时荷, 曹西颖, 杨国贤, 曾晓晴, 汪朝阳, 有机化学, 2021, 41,919.)
[31]
Feng, L.; Shi, W.; Ma, J.; Chen, Y.; Kui, F.; Hui, Y.; Xie, Z. Sens. Actuators,B 2016, 237,563.
[32]
Li, Y.; Shi, W.; Ma, J.; Wang, X.; Kong, X.; Zhang, Y.; Feng, L.; Hui, Y.; Xie, Z. J. Photochem. Photobiol..,A 2017, 338,1.
[33]
Xie, Z.; Kong, X.; Feng, L.; Ma, J.; Li, Y., Wang, X.; Bao, W.; Shi, W.; Hui, Y. Sens. Actuators,B 2018, 257,154.
[34]
Hao, Y.; Xie, Z.; Bao, W.; Wang, X.; Shi, W. Chin. J. Org. Chem. 2018, 38,2109 (in Chinese).
[34]
( 郝云鹏, 解正峰, 包万睿, 王馨, 石伟, 有机化学, 2018, 38,2109.)
[35]
Xue, S.; Xie, Z.; Chu, Y.; Yue, Y.; Shi, W.; Zhou, J. Chin. J. Org. Chem. 2021, 41,1138 (in Chinese).
[35]
( 薛松松, 解正峰, 褚义成, 岳永. 2021, 41,1138.)
[36]
Chu, Y.; Xie, Z.; Zhuang, D.; Yue, Y.; Yue, Y.; Shi, W.; Feng, S. Chin. J Chem. 2019, 37,1216.
[37]
Chu, Y.; Xie, Z.; Yue, Y.; Yue, Y.; Kong, X.; Shi, W.; Feng, S. ACS Omega 2019, 4,5367.
[38]
Chen, Z.; Qi, Q.; Zhang, H. Spectrochim. Acta,Part A 2020, 238,118384.
[39]
Tian, L.; Xue, J.; Li, S.; Yang, Z. J. Photochem. Photobiol.,A 2019, 382,111955.
[40]
Wang, M.; Lu, L.; Song, W.; Wang, X.; Sun, T.; Zhu, J.; Wang, J. J. Lumin. 2020,4.
[41]
Shi, W.; Chen, Y.; Chen, X.; Xie, Z.; Hui, Y. J. Lumin. 2016, 174,56.
[42]
Samik, A.; Saswati, G.; Deblina, S.; Paramita, G.; Nabendu, M.; Tapan,K. M. J. Mol. Struct. 2021, 1224,129179.
[43]
Mohanasundaram, D.; Kumar,G. G.V.; Kumar,S. K.; Maddiboyina, B.; Raja,R. P.; Rajesh, J.; Sivaraman, G. J. Mol. Liq. 2020, 317,113913.
[44]
Liang, S.; Tong, Q.; Qin, X.; Liao, X.; Li, Q.; Yan, G. Spectrochim. Acta,Part A 2020, 230,118029.
[45]
Saha, U.; Das, B.; Dolai, M.; Butcher,R. J.; Kumar,G. S. ACS Omega 2020, 5,18411.
[46]
Qin, X.; Tong, Q.; Chang, M.; Liang, S. Spectrochim. Acta,Part A 2020, 402,112792.
文章导航

/