研究论文

可见光催化炔烃串联氰基烷基磺酰化/环化

  • 刘宇 ,
  • 陈赞 ,
  • 陈镤 ,
  • 熊碧权 ,
  • 谢军 ,
  • 刘岸 ,
  • 梁云 ,
  • 唐课文
展开
  • a 湖南理工学院化学化工学院 湖南岳阳 414006
    b 湖南师范大学 湖南省有机功能分子组装与应用重点实验室 长沙 410081

收稿日期: 2021-02-27

  修回日期: 2021-03-18

  网络出版日期: 2021-03-25

基金资助

国家自然科学基金(22078084); 国家自然科学基金(51874132); 湖南省教育厅科学研究基金(20A224); 湖南省教育厅科学研究基金(20A213); 湖南省教育厅科学研究基金(18B355); 湖南省科技计划项目(2020RC3056); 湖南省科技计划项目(2018TP1017); 湖南省自然科学基金(2020JJ5221); 湖南省自然科学基金(2020JJ5212)

Visible-Light-Catalyzed Tandem Cyanoalkylsulfonylation/ Cyclization of Alkynes

  • Yu Liu ,
  • Zan Chen ,
  • Pu Chen ,
  • Biquan Xiong ,
  • Jun Xie ,
  • An Liu ,
  • Yun Liang ,
  • Kewen Tang
Expand
  • a Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006
    b Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081
* Corresponding authors.E-mail:;

Received date: 2021-02-27

  Revised date: 2021-03-18

  Online published: 2021-03-25

Supported by

National Natural Science Foundation of China(22078084); National Natural Science Foundation of China(51874132); Scientific Research Fund of Hunan Provincial Education Department(20A224); Scientific Research Fund of Hunan Provincial Education Department(20A213); Scientific Research Fund of Hunan Provincial Education Department(18B355); Science and Technology Planning Project of Hunan Province(2020RC3056); Science and Technology Planning Project of Hunan Province(2018TP1017); Natural Science Foundation of Hunan Province(2020JJ5221); Natural Science Foundation of Hunan Province(2020JJ5212)

摘要

报道了一种在无过渡金属条件下可见光催化炔烃与环酮肟衍生物的串联氰基烷基磺酰化/环化反应, 通过SO2的插入合成2-氰基烷基磺酰基-9H-吡咯并[1,2-a]吲哚. 该碳碳叁键的双官能团化包括自由基机理, 依次经历了亚胺自由基的形成、环酮的开环、SO2的插入、磺酰基对碳碳叁键的加成、分子内环化和异构化.

本文引用格式

刘宇 , 陈赞 , 陈镤 , 熊碧权 , 谢军 , 刘岸 , 梁云 , 唐课文 . 可见光催化炔烃串联氰基烷基磺酰化/环化[J]. 有机化学, 2021 , 41(6) : 2290 -2301 . DOI: 10.6023/cjoc202102051

Abstract

A transition-metal-free visible-light-mediated tandem cyanoalkylsulfonylation/cyclization of alkynes with cycloketone oxime derivatives for the construction of 2-cyanoalkylsulfonyl-9H-pyrrolo[1,2-a]indoles through the insertion of SO2 is reported. The difunctionalization of carbon-carbon triple bonds includes a radical mechanism and undergoes the formation of iminyl radical, ring-opening of cycloketone, insertion of SO2, addition of sulfonyl radical to carbon-carbon triple bonds, intramolecular cyclization and isomerization.

参考文献

[1]
(a) Wang, T.; Jiao, N. Acc. Chem. Res. 2014, 47,1137.
[1]
(b) Hu, P.; Chai, J.-C.; Duan, Y.-L.; Liu, Z.-H.; Cui, G.-L.; Chen, L.-Q. J. Mater. Chem. A 2016, 4,10070.
[1]
(c) Bagal, D.-B.; Bhanage, B.-M. Adv. Synth. Catal. 2015, 357,883.
[1]
(d) Yan, G.; Zhang, Y.; Wang, J. Adv. Synth. Catal. 2017, 359,4068.
[1]
(e) Fleming, F.-F.; Yao, L.-H.; Ravikumar, P.-C.; Funk, L.; Shook, B.-C. J. Med. Chem. 2010, 53,7902.
[1]
(f) Rappoport, Z. The Chemistry of the Cyano Group, Wiley, London, 1970, pp.121~312.
[1]
(g) Fleming, F.-F. Nat. Prod. Rep. 1999, 16,597.
[1]
(h) Fatiadi, A. J. In Preparation and Synthetic Applications of Cyano Compounds, Eds.: Patai, S.; Rappoport, Z., Wiley-VCH, New York, 1983.
[2]
(a) Suto, Y.; Tsuji, R.; Kanai, M.; Shibasaki, M. Org. Lett. 2005, 7,3757.
[2]
(b) Wang, G.-W.; Zhou, A.-X.; Wang, J.-J.; Hu, R.-B.; Yang, S.-D. Org. Lett. 2013, 15,5270.
[2]
(c) Shen, J.-X.; Yang, D.-J.; Liu, Y.-X.; Qin, S.-S.; Zhang, J.-W.; Sun, J.-K.; Liu, C.-H.; Liu, C.-Y.; Zhao, X.-M.; Chu, C.-H.; Liu, R.-H. Org. Lett. 2014, 16,350.
[2]
(d) Takaya, H.; Ito, M.; Murahashi, S.-I. J. Am. Chem. Soc. 2009, 131,10824.
[2]
(e) Li, Y.; Liu, B.; Li, H.-B.; Wang, Q.; Li, J.-H. Chem. Commun. 2015, 51,1024.
[2]
(f) Cheng, P.; Wang, W.; Wang, L.; Zeng, J.-G.; Reiser, O.; Liang, Y. Tetrahedron Lett. 2019, 60,1408.
[3]
(a) Kumagai, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126,13632.
[3]
(b) Zhang, J.-L.; Liu, Y.; Song, R.-J.; Jiang, G.-F.; Li, J.-H. Synlett 2014, 25,1031.
[3]
(c) Chakraborty, S.; Patel, Y.-J.; Krause, J.-A.; Guan, H. Angew. Chem., Int. Ed. 2013, 52,7523.
[3]
(d) Pan, C.-D.; Zhang, H.-L.; Zhu, C.-J. Org. Biomol. Chem. 2015, 13,361.
[3]
(e) Hu, M.; Zou, H.-X.; Song, R.-J.; Xiang, J.-N.; Li, J.-H. Org. Lett. 2016, 18,6460.
[3]
(f) Evans, M.-E.; Li, T.; Jones, W.-D. J. Am. Chem. Soc. 2010, 132,16278.
[3]
(g) Chen, Z.; Zhou, Q.; Chen, Q.-N.; Chen, P.; Xiong, B.-Q.; Liang, Y.; Tang, K.-W.; Xie, J.; Liu, Y. Org. Biomol. Chem. 2020, 18,8677.
[4]
(a) Wu, T.; Mu, X.; Liu, G.-S. Angew. Chem., Int. Ed. 2011, 50,12578.
[4]
(b) Li, X.-Q.; Xu, J.; Gao, Y.-Z.; Fang, H.; Tang, G.; Zhao, Y.-F. J. Org. Chem. 2015, 80,2621.
[4]
(c) Liu, Y.-B.; Yang, K.; Ge, H.-B. Chem. Sci. 2016, 7,2804.
[4]
(d) Chatalova-Sazepin, C.; Wang, Q.; Sammis, G.-M.; Zhu, J. Angew. Chem., Int. Ed. 2015, 54,5443.
[4]
(e) Bunescu, A.; Wang, Q.; Zhu, J.-P. Org. Lett. 2015, 17,1890.
[4]
(f) Bunescu, A.; Ha, T.-M.; Wang, Q.; Zhu, J.-P. Angew. Chem., Int. Ed. 2017, 56,10555.
[4]
(g) Liu, Y.-Y.; Yang, X.-H.; Song, R.-J.; Luo, S.-L.; Li, J.-H. Nat. Commun. 2017, 8,14720.
[5]
(a) Boivin, J.; Fouquet, E.; Zard, S.-Z.; J. Am. Chem. Soc. 1991, 113,1055.
[5]
(b) Nishimura, T.; Yoshinaka, T.; Nishiguchi, Y.; Maeda, Y.; Uemura, S. Org. Lett. 2005, 7,2425.
[5]
(c) Nishimura, T.; Uemura, S. J. Am. Chem. Soc. 2000, 122,12049.
[5]
(d) Yang, H.-B.; Selander, N. Chem.-Eur. J. 2017, 23,1779.
[5]
(e) Yang, H.-B.; Pathipati, S.-R.; Selander, N. ACS Catal. 2017, 7,8441.
[5]
(f) Morcillo, S.-P. Angew. Chem., Int. Ed. 2019, 58,14044.
[5]
(g) Xiao, T.; Huang, H.; An, D.; Zhou, L. Synthesis 2020, 52,1585.
[5]
Song, C.-H.; Shen, X. Yu, F. He, Y.-P.; Yu, S.-Y. Chin. J. Org. Chem. 2020, 40,3748(in Chinese).
[5]
(宋常华, 沈许, 于芳, 何宇鹏, 俞寿云, 有机化学, 2020, 40,3748.)
[6]
(a) Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Chen, J.-P.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57,15505.
[6]
(b) Yu, X.-Y.; Wang, P.-Z.; Yan, D.-M.; Liu, B.; Chen, J.-R.; Xiao, W.-J. Adv. Synth. Catal. 2018, 360,3601.
[6]
(c) He, B.-Q.; Yu, X.-Y.; Wang, P.-Z.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2018, 54,12262.
[6]
(d) Lu, B.; Cheng, Y.; Chen, L.-Y.; Chen, J.-R.; Xiao, W.-J. ACS. Catal. 2019, 9,8159.
[6]
(e) Yu, X.-Y.; Chen, J.-R.; Wang, P.-Z.; Yang, M.-N.; Liang, D.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57,738.
[6]
(f) Xiao, W.; Xiao, W.-J. Chin. Chem. Lett. 2020, 31,3083.
[6]
(g) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121,506.
[7]
(a) Tang, Y.-Q.; Yang, J.-C.; Wang, L.; Fan, M.-J.; Guo, L.-N. Org. Lett. 2019, 21,5178.
[7]
(b) Wu, J.; Zhang, J.-Y.; Gao, P.; Xu, S.-L.; Guo, L.-N. J. Org. Chem. 2018, 83,1046.
[7]
(c) Zhang, J.-J.; Duan, X.-H.; Wu, Y.; Yang, J.-C. Guo, L.-N. Chem. Sci. 2019, 10,161.
[7]
(d) Yang, L.; Gao, P.; Duan, X.-H.; Gu, Y.-R.; Guo, L.-N. Org. Lett. 2018, 20,1034.
[7]
(e) He, Y.; Lou, J.; Wu, K.-K.; Wang, H.-M.; Yu, Z.-K. J. Org. Chem. 2019, 84,2178.
[7]
(f) Yin, Z.-P.; Rabeah, J.; Brückner, A.; Wu, X.-F. ACS Catal. 2018, 8,10926.
[7]
(g) Yu, J.-X.; Teng, F.; Xiang, J.-N.; Deng, W.; Li, J.-H. Org. Lett. 2019, 21,9434.
[7]
(h) Zhou, X.-S.; Cheng, Y.; Chen, J.; Yu, X.-Y.; Xiao, W.-J.; Chen, J.-R. ChemCatChem 2019, 11,5300.
[8]
(a) Chen, Z.; Zhou, Q.; Wang, Q.-L.; Chen, P.; Xiong, B.-Q.; Liang, Y.; Tang, K.-W.; Liu, Y. Adv. Synth. Catal. 2020, 362,3004.
[8]
(b) Zhang, J.; Zhang, X.-F.; Xie, W.-L.; Ye, S.-Q.; Wu, J. Org. Lett. 2019, 21,4950.
[8]
(c) Liu, Y.; Wang, Q.-L.; Chen, Z.; Li, H.; Xiong, B.-Q.; Zhang, P.-L.; Tang, K.-W. Chem. Commun. 2020, 56,3011.
[8]
(d) Zheng, M.; Li, G.-G.; Lu, H.-J. Org. Lett. 2019, 21,1216.
[8]
(e) Yin, Z.-P.; Rabeah, J.; Brückner, A.; Wu, X.-F. Org. Lett. 2019, 21,1766.
[8]
(f) Lou, J.; He, Y.; Li, Y.-L.; Yu, Z.-K. Adv. Synth. Catal. 2019, 361,3787.
[8]
(g) Shen, X.; Zhao, J.-J.; Yu, S.-Y. Org. Lett. 2018, 20,5523.
[8]
(h) Tian, L.; Guo, S.-Q.; Wang, R.; Li, Y.; Tang, C.-L.; Shi, L.-L.; Fu, J.-K. Chem. Commun. 2019, 55,5347.
[8]
(i) Zhao, B.-L.; Shi, Z.-Z. Angew. Chem., Int. Ed. 2017, 56,12727.
[8]
(j) Li, L.-Y.; Chen, H.-G.; Mei, M.-J.; Zhou, L. Chem. Commun. 2017, 53,11544.
[8]
(k) Xiao, W.; Wu, J. Chin. Chem. Lett. 2020, 31,3083.
[8]
(l) Min, Q.-Q.; Li, N.; Chen, G.-L.; Liu, F. Org. Chem. Front. 2019, 6,1200.
[9]
(a) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev. 2016, 45,2044.
[9]
(b) Xiong, T.; Zhang, Q. Chem. Soc. Rev. 2016, 45,3069.
[9]
(c) Wang, P.-Z.; Zhao, Q.-Q.; Xiao, W.-J.; Chen, J.-R. Green Synth. Catal. 2020, 1,42.
[9]
(d) Jiang, H.; Studer, A. CCS Chem. 2019, 1,38.
[10]
(a) Shaaban, S.; Liang, S.; Liu, N.-W.; Manolikakes, G. Org. Biomol. Chem. 2017, 15,1947.
[10]
(b) Rayner, C.-M. Contemp. Org. Synth. 1994, 1,191.
[10]
(c) Meadows, D.-C.; Gervay-Hague, J. Med. Res. Rev. 2006, 26,793.
[10]
(d) Markitanov, Y.-M.; Timoshenko, V.-M.; Shenko, Y.-G. J. Sulfur Chem. 2014, 35,188.
[10]
(e) Fukuda, H.; Frank, F.-J.; Truce, W.-E. J. Org. Chem. 1963, 28,1420.
[10]
(f) Fang, Y.-Y.; Luo, Z.-G.; Xu, X.-M. RSC Adv. 2016, 6,59661.
[10]
(g) Alba, A.-N.-R.; Companyóa, X.; Rios, R. Chem. Soc. Rev. 2010, 39,2018.
[11]
(a) Rao, W.-H.; Zhan, B.-B.; Chen, K.; Ling, P.-X.; Zhang, Z.-Z.; Shi, B.-F. Org. Lett. 2015, 17,3552.
[11]
(b) Cabrera Afonso, M.-J.; Lu, Z.-P.; Kelly, C.-B.; Lang, S.-B.; Dykstra, R.; Gutierrez, O.; Molander, G.-A. Chem. Sci. 2018, 9,3186.
[11]
(c) Song, R.-J.; Liu, Y.; Liu, Y.-Y.; Li, J.-H. J. Org. Chem. 2011, 76,1001.
[11]
(d) Xie, L.-Y.; Peng, S.; Liu, F.; Chen, G.-R.; Xia, W.; Yu, X.-Y.; Li, W.-F.; Cao, Z.; He, W.-M. Org. Chem. Front. 2018, 5,2604.
[11]
(e) Xiao, F.-H.; Liu, C.; Yuan, S.-S.; Huang, H.-W.; Deng, G.-J. J. Org. Chem. 2018, 83,10420.
[11]
(f) Howell, B.-A.; Daniel, Y.-G. J. Fire Sci. 2018, 36,518.
[12]
(a) Zheng, D.; Wu, J. Sulfur Dioxide Insertion Reactions for Organic Synthesis, Nature Springer, Berlin, 2017.
[12]
(b) Liu, J.-D.; Zheng, L.-Y. Adv. Synth. Catal. 2019, 361,1710.
[12]
(c) Ye, S.-Q.; Qiu, G.-Y.-S.; Wu, J. Chem. Commun. 2019, 55,1013.
[12]
(d) Qiu, G.-Y.-S.; Lai, L.-F.; Cheng, J.; Wu, J. Chem. Commun. 2018, 54,10405.
[12]
(e) Qiu, G.-Y.-S.; Zhou, K.-D.; Gao, L.; Wu, J. Org. Chem. Front. 2018, 5,691.
[12]
(f) Zhu, J.; Yang, W.-C.; Wang, X.-D.; Wu, L. Adv. Synth. Catal. 2018, 360,386.
[12]
(g) Liu, G.; Fan, C.-B.; Wu, J. Org. Biomol. Chem. 2015, 13,1592.
[12]
(h) Ye, S.-Q.; Zhou, K.-D.; Rojsitthisak, P.; Wu, J. Org. Chem. Front. 2020, 7,14.
[13]
(a) Wu, Y.-C.; Jiang, S.-S.; Luo, S.-Z.; Song, R.-J.; Li, J.-H. Chem. Commun. 2019, 55,8995.
[13]
(b) Yang, J.; Liu, Y.-Y.; Song, R.-J.; Peng, Z.-H.; Li, J.-H. Adv. Synth. Catal. 2016, 358,2286.
[13]
(c) Gong, X.-X.; Wang, M.-J.; Ye, S.-Q.; Wu, J. Org. Lett. 2019, 21,1156.
[13]
(d) An, Y.-Y.; Wu, J. Org. Lett. 2017, 19,6028.
[13]
(e) Rostami, A.; Akradi, J. Tetrahedron Lett. 2010, 51,3501.
[13]
(f) Rahimizadeha, M., Rajabzadehb, G., Hossein, S.-M., AliShiri, E. J. Mol. Catal. A 2010, 323,59.
[13]
(g) Su, W.-G. Tetrahedron Lett. 1994, 35,4955.
[13]
(h) Liu, Q.-S.; Lv, Y.-F.; Liu, R.-S.; Zhao, X.-H.; Wang, J.-W.; Wei, W. Chin. Chem. Lett. 2021, 32,136.
[13]
(i) He, F.-S.; Yang, M.; Ye, S.-Q.; Wu, J. Chin. Chem. Lett. 2021, 32,461.
[14]
(a) Liu, T.; Zheng, D.-Q.; Li, Z.-H.; Wu, J. Adv. Synth. Catal. 2018, 360,865.
[14]
(b) Chen, H.-J.; Liu, M.-L.; Qiu, G.-Y.-S.; Wu, J. Adv. Synth. Catal. 2019, 361,146.
[14]
(c) Li, Y.-W.; Mao, R.-Y.; Wu, J. Org. Lett. 2017, 19,4472.
[14]
(d) Woolven, H.; González-Rodríguez, C.; Marco, I.; Thompson, A.-L.; Willis, M.-C. Org. Lett. 2011, 13,4876.
[14]
(e) Vedovato, V.; Talbot, E.-P.-A.; Willis, M.-C. Org. Lett. 2018, 20,5493.
[14]
(f) Wang, Y.; Deng, L.-L.; Zhou, J.; Wang, X.-C.; Mei, H.-B.; Han, J.-L.; Pan, Y. Adv. Synth. Catal. 2018, 360,1060.
[14]
(g) Liu, T.; Zhou, W.; Wu, J. Org. Lett. 2017, 19,6638.
[14]
(h) Deeming, A.-S.; Russell, C.-J.; Willis, M.-C. Angew. Chem., Int. Ed. 2016, 55,747.
[14]
(i) Sun, K.; Shi, Z.; Liu, Z.; Luan, B.; Zhu, J. Org. Lett. 2018, 20,6687.
[14]
(j) Zhou, K.-D.; Chen, J.-Q.; Wu, J. Chin. Chem. Lett. 2020, 31,2996.
[15]
(a) Wang, M.; Chen, S.-H.; Jiang, X.-F. Org. Lett. 2017, 19,4916.
[15]
(b) Gong, X.-X.; Li, X.-F.; Xie, W.-L.; Wu, J.; Ye, S.-Q. Org. Chem. Front. 2019, 6,1863.
[16]
(a) Kumar, S.; Verma, S.; Jain, S.-L.; Sain, B. Tetrahedron Lett. 2011, 52,3393.
[16]
(b) Ye, S.-Q.; Li, Y.-W.; Wu, J.; Li, Z.-M. Chem. Commun. 2019, 55,2489.
[16]
(c) Chen, S.-H.; Li, Y.-P.; Wang, M.; Jiang, X.-F. Green Chem. 2020, 22,322.
[16]
(d) Li, Y.-W.; Liu, T.; Qiu, G.-Y.-S.; Wu, J. Adv. Synth. Catal. 2019, 361,1154.
[16]
(e) Gong, X.-X.; Chen, J.-H.; Lai, L.-F.; Cheng, J.; Sun, J.-T.; Wu, J. Chem. Commun. 2018, 54,11172.
[17]
(a) Liu, Y.; Chen, Z.; Wang, Q.-L.; Chen, P.; Xie, J.; Xiong, B.-Q.; Zhang, P.-L.; Tang, K.-W. J. Org. Chem. 2020, 85,2385.
[17]
(b) Xie, X.-Y.; Li, P.-H.; Wang, L. Eur. J. Org. Chem. 2019,221.
[17]
(c) Liu, Y.; Wang, Q.-L.; Chen, Z.; Chen, P.; Tang, K.-W.; Zhou, Q.; Xie, J. Org. Biomol. Chem. 2019, 17,10020.
[17]
(d) Zhu, J.-W.; Sun, S.; Xia, M.-F.; Gu, N.; Cheng, J. Org. Chem. Front. 2017, 4,2153.
[17]
(e) Zhu, X.-Y.; Li, M.; Han, Y.-P.; Chen, S.; Li, X.-S.; Liang, Y.-M. J. Org. Chem. 2017, 82,8761.
[17]
(f) Xie, X.-Y.; Li, P.-H.; Wang, L. Eur. J. Org. Chem. 2019,221.
[17]
(g) Zhang, P.-B.; Shi, S.-S.; Gao, X.; Han, S.; Lin, J.-M.; Zhao, Y.-F. Org. Biomol. Chem. 2019, 17,2873.
[17]
(h) Zhang, H.-L.; Li, W.-P.; Zhu, C.-J. J. Org. Chem. 2017, 82,2199.
[17]
(i) Chen, S.; Zhang, P.-B.; Shu, W.-Y.; Gao, Y.-Z.; Tang, G.; Zhao, Y.-F. Org. Lett. 2016, 18,5712.
[18]
(a) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51,6828.
[18]
(b) Ouyang, X.-H.; Cheng, J.; Li, J.-H. Chem. Commun. 2018, 54,8745.
[18]
(c) Hari, D. P.; Ko?nig, B. Angew. Chem., Int. Ed. 2013, 52,4734.
[18]
(d) Hari, D. P.; Schroll, P.; Ko?nig, B. J. Am. Chem. Soc. 2012, 134,2958.
[18]
(e) Ding, W.; Lu, L.-Q.; Zhou, Q.-Q.; Wei, Y.; Chen, J.-R.; Xiao, W.-J. J. Am. Chem. Soc. 2017, 139,63.
[18]
(f) Zhang, M.; Li, N.; Tao, X.-Y.; Ruzi, R.; Yu, S.-Y.; Zhu, C.-J. Chem. Commun. 2017, 53,10228.
[18]
(g) Jiang, H.; Cheng, Y.; Wang, R.; Zhang, Y.; Yu, S. Chem. Commun. 2014, 50,6164.
[18]
(h) Liu, R.-S.; Liu, Q.-S.; Meng, H.-R.; Ding, H.-Y.; Hao, J.-D.; Ji, Z.-Y.; Yue, H.-L.; Wei, W. Org. Chem. Front. 2021, 8,1970.
[19]
(a) Yong, X.; Han, Y.-F.; Li, Y.; Song, R.-J.; Li, J.-H. Chem. Commun. 2018, 54,12816.
[19]
(b) Qin, Q.; Ren, D.; Yu, S. Org. Biomol. Chem. 2015, 13,10295.
[19]
(c) Sun, X.; Yu, S. Chem. Commun. 2016, 52,10898.
[19]
(d) Ouyang, X.-H.; Li, Y.; Song, R.-J.; Li, J.-H. Org. Lett. 2018, 20,6659.
[19]
(e) Han, Y.-Y.; Wang, H.; Yu, S. Org. Chem. Front. 2016, 3,953.
[19]
(f) Sun, J.; He, Y.; An, X.-D.; Zhang, X.; Yu, L.; Yu, S. Org. Chem. Front. 2018, 5,977.
[20]
(a) Li, Y.; Mou, T.; Lu, L.; Jiang, X. Chem. Commun. 2019, 55,14299.
[20]
(b) Zhou, H.; Deng, X.; Ma, Z.; Zhang, A.; Qin, Q.; Tan, R.-X.; Yu, S. Org. Biomol. Chem. 2016, 14,6065.
[20]
(c) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Acc. Chem. Res. 2016, 49,1911.
[20]
(d) Li, M.; Yang, J.; Ouyang, X.-H.; Yang, Y.; Hu, M.; Song, R.-J.; Li, J.-H. J. Org. Chem. 2016, 81,7148.
[20]
(e) Liu, Y.; Wang, Q.-L.; Chen, Z.; Zhou, Q.; Xiong, B.-Q.; Zhang, P.-L.; Tang, K.-W. Chem. Commun. 2019, 55,12212.
[20]
(f) Wang, P.-Z.; Gao, Y.; Chen, J.; Huan, X.-D.; Xiao, W.-J.; Chen, J.-R. ChemRxiv doi: 10. 26434/chemrxiv.13325669.v1.
[21]
(a) Yan, D.-M.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2019, 58,378.
[21]
(b) Yan, J.-M.; Cheo, H.-W.; Teo, W. K.; Shi, X. C.; Wu, H.; Idres, S.-B.; Deng, L.-W.; Wu, J. J. Am. Chem. Soc. 2020, 142,11357.
[21]
(c) Huang, B.-B.; Zhao, Y.-T.; Yang, C.; Gao, Y.; Xia, W.-J. Org. Lett. 2017, 19,3799.
[21]
(d) Xuan, J.; Feng, Z.-J.; Duan, S.-W.; Xiao, W.-J. RSC Adv. 2012, 2,4065.
[21]
(e) Zhang, J.; Wang, L.; Liu, Q.; Yang, Z.; Huang, Y. Chem. Commun. 2013, 49,11662.
[21]
(f) Liu, Y.; Wang, Q.-L.; Xiong, B.-Q.; Zhang, P.-L.; Yang, C.-A.; Gong, Y.-X.; Liao, J.; Zhou, Q. Synlett 2018, 29,2396.
文章导航

/