研究论文

蜈蚣毒素多肽RhTx的高效化学合成及复性折叠研究

  • 王金艳 ,
  • 董黎颖 ,
  • 刘雅妮 ,
  • 陈西同 ,
  • 马艳楠 ,
  • 尹昊 ,
  • 杜姗姗 ,
  • 齐昀坤 ,
  • 王克威
展开
  • a 青岛大学药学院 山东青岛 266073
    b 青岛科技大学化工学院 山东青岛 266042
† 共同第一作者(These authors contributed equally to this work).

收稿日期: 2021-02-24

  修回日期: 2021-03-24

  网络出版日期: 2021-04-12

基金资助

国家自然科学基金(21807063); 国家自然科学基金(82003647); 国家自然科学基金(81870653); 中国博士后科学基金(2019M652307); 中国博士后科学基金(2020T130332); 山东省自然科学基金(ZR2019BH045); 山东省自然科学基金(ZR2020QH100)

Efficient Synthesis and Oxidative Folding Studies of Centipede Toxin RhTx

  • Jinyan Wang ,
  • Liying Dong ,
  • Ya'ni Liu ,
  • Xitong Chen ,
  • Yannan Ma ,
  • Hao Yin ,
  • Shanshan Du ,
  • Yunkun Qi ,
  • Kewei Wang
Expand
  • a School of Pharmacy, Qingdao University, Qingdao, Shandong 266073
    b College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042
* Corresponding authors. E-mail: ;

Received date: 2021-02-24

  Revised date: 2021-03-24

  Online published: 2021-04-12

Supported by

National Natural Science Foundation of China(21807063); National Natural Science Foundation of China(82003647); National Natural Science Foundation of China(81870653); China Postdoctoral Science Foundation(2019M652307); China Postdoctoral Science Foundation(2020T130332); Natural Science Foundation of Shandong Province(ZR2019BH045); Natural Science Foundation of Shandong Province(ZR2020QH100)

摘要

二硫键的氧化折叠是合成二硫键构象锁定多肽的关键步骤. 前人发展的二硫键氧化折叠策略主要有一次氧化折叠、多次氧化折叠和一锅法氧化折叠. 目前对三种策略复性效率和收率等的比较性研究较少. 分别采用三种氧化折叠策略制备目标蜈蚣毒素多肽RhTx. 结果表明, 两次氧化折叠策略的分离收率高于一次和一锅法氧化折叠策略, 一锅法氧化折叠策略可能会导致较大比例的错误折叠. 探索了数十毫克量级RhTx的高效制备方法, 为进一步探索RhTx靶向TRPV1的结构机制等研究提供了工具分子. 此外, 对三种氧化折叠策略进行了系统比较, 为二硫键构象锁定多肽的合成提供了参考.

本文引用格式

王金艳 , 董黎颖 , 刘雅妮 , 陈西同 , 马艳楠 , 尹昊 , 杜姗姗 , 齐昀坤 , 王克威 . 蜈蚣毒素多肽RhTx的高效化学合成及复性折叠研究[J]. 有机化学, 2021 , 41(7) : 2800 -2809 . DOI: 10.6023/cjoc202102045

Abstract

The critical step for the synthesis of disulfide-containing peptides is the efficient construction of one or multiple disulfide bridges. Generally, the folding of disulfide bonds could be achieved by three chemical strategies,i.e. one-step oxidative folding strategy, multi-step oxidative folding strategy, and one-pot oxidative folding strategy. Because few comparative studies have been conducted on efficiencies of three strategies, the systematical research is desirable. Three folding strategies were separately applied for the preparation of centipede toxin RhTx. The results showed that the isolated yield of two-step oxidative folding strategy was higher than those of one-step and one-pot oxidative folding strategies. Besides, the one-pot oxidative folding strategy may induce severe misfoldings. The circular dichroism (CD) and activity tests indicated that disulfide bonds are critical for the structure and activity of RhTx. In addition, the efficient preparation of RhTx on tens of milligrams scale was achieved, affording molecular tools for the further biological and biophysical studies of RhTx targeting TRPV1. Overall, three mainstream oxidative folding strategies were systematically studied, which provided a valuable reference for the synthesis of disulfide-containing peptides.

参考文献

[1]
(a) Daly,N. L.; Craik,D. J. Curr. Opin. Chem. Biol. 2011, 15,362.
[1]
(b) Silva,P. M.; Gonçalves, S.; Santos,N. C. Front. Microbiol. 2014, 5,97.
[1]
(c) Tanemura, Y.; Mochizuki, Y.; Kumachi, S.; Nemoto, N. Biology 2015, 4,161.
[1]
(d) Wu, Q.; Liu, Z.; Fu, C.; Lin, Y.; Dai, Q. Chin. J. Org. Chem. 2010, 30,1517 (in Chinese).
[1]
( 吴巧玲, 刘珠果, 付超, 林原斌, 戴秋云, 有机化学, 2010, 30,1517.)
[1]
(e) Chi, Y-S.; Zhang,H. -B.; Ni,S. -J.; Huang,W. -L. Chin. J. Org. Chem. 2008, 28,416 (in Chinese).
[1]
( 迟玉石, 张惠斌, 倪帅健, 黄文龙, 有机化学, 2008, 28,416.)
[2]
(a) Go?ngora-Benítez, M.; Tulla-Puche, J.; Albericio, F. Chem. Rev. 2014, 114,901.
[2]
(b) Cemazar, M.; Kwon, S.; Mahatmanto, T.; Ravipati,A. S.; Craik,D. J. Curr. Top. Med. Chem. 2012, 12,1534.
[2]
(c) Akondi,K. B.; Muttenthaler, M.; Dutertre, S.; Kaas, Q.; Craik,D. J.; Lewis,R. J.; Alewood,P. F. Chem. Rev. 2014, 114,5815.
[2]
(d) Sun,S. -S.; Chen, J.; Zhao, R.; Bierer, D.; Wang, J.; Fang,G. -M.; Li,Y. -M. Tetrahedron Lett. 2019, 60,1197.
[2]
(e) Pan, X.; Li, Z.; Huang, X.; Huang, G.; Gao, S.; Shen, H.; Liu, L.; Lei, J.; Yan, N. Science 2019, 363,1309.
[2]
(f) Lin King, J.V.; Emrick, J.J.; Kelly, M.J.S.; Herzig, V.; King, G.F.; Medzihradszky, K.F.; Julius, D. Cell 2019, 178,1362.
[2]
(g) Guo,X. -Q.; Liang, J.; Li, Y.; Zhang, Y.; Huang, D.; Tian, C. Chin. Chem. Lett. 2018, 29,1139.
[2]
(h) Sun, D.; Liu, S.; Li, S.; Zhang, M.; Yang, F.; Wen, M.; Shi, P.; Wang, T.; Pan, M.; Chang, S.; Zhang, X.; Zhang, L.; Tian, C.; Liu, L. eLife 2020, 9,e57096.
[2]
(i) Zhu, W.; Hou, F.; Fang, J.; Bahrani Fard,M. R.; Liu, Y.; Ren, S.; Wu, S.; Qi, Y.; Sui, S.; Read,A. T.; Sherwood,J. M.; Zou, W.; Yu, H.; Zhang, J.; Overby,D. R.; Wang, N.; Ethier,C. R.; Wang, K. iScience 2021, 24,102042.
[2]
(j) Song, H.; Liu, C.; Wu, Y.; Hu, H.; Yan, F. Acta Chim. Sinica 2018, 76,95 (in Chinese).
[2]
( 宋慧, 刘超, 吴仪君, 胡宏岗, 阎芳, 化学学报, 2018, 76,95.)
[3]
(a) Xu, X.; Xu, Q.; Chen, F.; Shi, J.; Liu, Y.; Chu, Y.; Wan, S.; Jiang, T.; Yu, R. RSC Adv. 2019, 9,668.
[3]
(b) Zheng, Y.; Zhai, L.; Zhao, Y.; Wu, C. J. Am. Chem. Soc. 2015, 137,15094.
[3]
(c) Chen, C.; Gao, S.; Qu, Q.; Mi, P.; Tao, A.; Li,Y. -M. Chin. Chem. Lett. 2018, 29,1135.
[3]
(d) Liu, J.; Dong, S. Chin. Chem. Lett. 2018, 29,1131.
[3]
(e) Zhao, R.; Shi, P.; Chen, J.; Sun, S.; Chen, J.; Cui, J.; Wu, F.; Fang, G.; Tian, C.; Shi, J.; Bierer, D.; Liu, L.; Li,Y. -M. Chem. Sci. 2020, 11,7927.
[3]
(f) Ge, W.; Chen, J.; Zhang, Y.; Zong, L.; Zhang, M.; Dong, J. Chin. J. Org. Chem. 2017, 37,2409 (in Chinese).
[3]
( 葛巍巍, 陈静, 张也, 宗良, 张鸣, 董俊军, 有机化学, 2017, 37,2409.)
[4]
Yang, S.; Yang, F.; Wei, N.; Hong, J.; Li, B.; Luo, L.; Rong, M.; Yarov-Yarovoy, V.; Zheng, J.; Wang, K.; Lai, R. Nat. Commun. 2015, 6,8297.
[5]
(a) Chu, Y.; Qiu, P.; Yu, R. Toxins 2020, 12,230.
[5]
(b) Zhu, A.; Aierken, A.; Yao, Z.; Vu, S.; Tian, Y.; Zheng, J.; Yang, S.; Yang, F. Toxicon 2020, 178,41.
[5]
(c) Du, G.; Tian, Y.; Yao, Z.; Vu, S.; Zheng, J.; Chai, L.; Wang, K.; Yang, S. J. Biol. Chem. 2020, 295,9641.
[5]
(d) Luo, L.; Wang, Y.; Li, B.; Xu, L.; Kamau,P. M.; Zheng, J.; Yang, F.; Yang, S.; Lai, R. Nat. Commun. 2019, 10,2134.
[5]
(e) Ombati, R.; Luo, L.; Yang, S.; Lai, R. Toxicon 2018, 154,60.
[5]
(f) Yu, R.; Liu, H.; Wang, B.; Harvey,P. J.; Wei, N.; Chu, Y. RSC Adv. 2020, 10,2141.
[6]
Lyu,H. -N.; Wei,N. -N.; Tu,P. -F.; Wang, K.; Jiang, Y. Nat. Prod. Res. 2020, 34,1068.
[7]
(a) Karas,J. A.; Patil,N. A.; Tailhades, J.; Sani,M. -A.; Scanlon,D. B.; Forbes,B. E.; Gardiner, J.; Separovic, F.; Wade,J. D.; Hossain,M. A. Angew. Chem.,Int. Ed. 2016, 55,14743.
[7]
(b) Tang, S.; Si,Y. -Y.; Wang,Z. -P.; Mei,K. -R.; Chen, X.; Cheng,J. -Y.; Zheng,J. -S.; Liu, L. Angew. Chem.,Int. Ed. 2015, 54,5713.
[8]
(a) Qu, Q.; Gao, S.; Li,Y. -M. J. Pept. Sci. 2018, 24,e3112.
[8]
(b) Muttenthaler, M.; Nevin,S. T.; Grishin,A. A.; Ngo,S. T.; Choy,P. T.; Daly,N. L.; Hu,S. -H.; Armishaw,C. J.; Wang,C. -I.A.; Lewis,R. J.; Martin,J. L.; Noakes,P. G.; Craik,D. J.; Adams,D. J.; Alewood,P. F. J. Am. Chem. Soc. 2010, 132,3514.
[8]
(c) Lan, H.; Wu, K.; Zheng, Y.; Pan, M.; Huang,Y. -C.; Gao, S.; Zheng,Q. -Y.; Zheng,J. -S.; Li,Y. -M.; Xiao, B.; Liu, L. J. Pept. Sci. 2016, 22,320.
[8]
(d) Chang,H. -N.; Liu,B. -Y.; Qi,Y. -K.; Zhou, Y.; Chen,Y. -P.; Pan,K. -M.; Li,W. -W.; Zhou,X. -M.; Ma,W. -W.; Fu,C. -Y.; Qi,Y. -M.; Liu, L.; Gao,Y. -F. Angew. Chem.,Int. Ed. 2015, 54,11760.
[8]
(e) Zhou, X.; Zuo, C.; Li, W.; Shi, W.; Zhou, X.; Wang, H.; Chen, S.; Du, J.; Chen, G.; Zhai, W.; Zhao, W.; Wu, Y.; Qi, Y.; Liu, L.; Gao, Y. Angew. Chem.,Int. Ed. 2020, 59,15114.
[9]
(a) Mochizuki, M.; Tsuda, S.; Tanimura, K.; Nishiuchi, Y. Org. Lett. 2015, 17,2202.
[9]
(b) Jordan,J. B.; Poppe, L.; Haniu, M.; Arvedson, T.; Syed, R.; Li, V.; Kohno, H.; Kim, H.; Schnier,P. D.; Harvey,T. S.; Miranda,L. P.; Cheetham, J.; Sasu,B. J. J. Biol. Chem. 2009, 284,24155.
[10]
(a) Dowell, C.; Olivera,B. M.; Garrett,J. E.; Staheli,S. T.; Watkins, M.; Kuryatov, A.; Yoshikami, D.; Lindstrom,J. M.; McIntosh,J. M. J. Neurosci. 2003, 23,8445.
[10]
(b) Luo, S.; Akondi,K. B.; Zhangsun, D.; Wu, Y.; Zhu, X.; Hu, Y.; Christensen, S.; Dowell, C.; Daly,N. L.; Craik,D. J.; Wang,C. -I.A.; Lewis,R. J.; Alewood,P. F.; McIntosh,J. M. J. Biol. Chem. 2010, 285,12355.
[10]
(c) Luo, S.; Christensen, S.; Zhangsun, D.; Wu, Y.; Hu, Y.; Zhu, X.; Chhabra, S.; Norton,R. S.; McIntosh,J. M. PLoS One 2013, 8,e54648.
[10]
(d) Shi, J.; So,L. -Y.; Chen, F.; Liang, J.; Chow,H. -Y.; Wong,K. -Y.; Wan, S.; Jiang, T.; Yu, R. J. Pept. Sci. 2018, 24,e3087.
[10]
(e) Wu, Y.; Wu, X.; Yu, J.; Zhu, X.; Zhangsun, D.; Luo, S. Molecules 2014, 19,966.
[10]
(f) Wu, Y; Wu, X.; Zhangsun, D.; Luo, S. Biotechnol. Bull. 2013, 7,184 (in Chinese).
[10]
( 吴勇, 吴潇洒, 长孙东亭, 罗素兰, 生物技术通报, 2013, 7,184.)
[11]
(a) Cuthbertson, A.; Indrevoll, B. Org. Lett. 2003, 5,2955.
[11]
(b) Naraga,A. M.B.; Belleza,O. J.V.; Villaraza,A. J.L. RSC Adv. 2018, 8,36579.
[11]
(c) Khemtémourian, L.; Desbenoit, N; Mahesh, P.; Chatterjee, S.; Deschemin,J. -C.; Vaulont, S.; Tomas, A.; Sari,M. -A.; Artaud, I. Protein Pept. Lett. 2012, 19,219.
[12]
(a) Cui,H. -K.; Guo, Y.; He, Y.; Wang,F. -L.; Chang,H. -N.; Wang,Y. -J.; Wu,F. -M.; Tian,C. -L.; Liu, L. Angew. Chem.,Int. Ed. 2013, 52,9558.
[12]
(b) Guo, Y.; Sun,D. -M.; Wang,F. -L.; He, Y.; Liu, L.; Tian,C. -L. Angew. Chem.,Int. Ed. 2015, 54,14276.
[12]
(c) Xu, Y.; Wang, T.; Guan,C. -J.; Li,Y. -M.; Liu, L.; Shi, J.; Bierer, D. Tetrahedron Lett. 2017, 58,1677.
[12]
(d) Wang, T.; Fan, J.; Chen,X. -X.; Zhao, R.; Xu, Y.; Bierer, D.; Liu, L.; Li,Y. -M.; Shi, J.; Fang,G. -M. Org. Lett. 2018, 20,6074.
[12]
(e) Qi,Y. -K.; Qu, Q.; Bierer, D.; Liu, L. Chem.-Asian J. 2020, 15,2793.
[12]
(f) Qu, Q.; Gao, S.; Wu, F.; Zhang,M. -G.; Li, Y.; Zhang,L. -H.; Bierer, D.; Tian,C. -L.; Zheng,J. -S.; Liu, L. Angew. Chem.,Int. Ed. 2020, 59,6037.
[12]
(g) Chen, J.; Sun, S.; Zhao, R.; Xi,C. -P.; Qiu, W.; Wang, N.; Wang, Y.; Bierer, D.; Shi, J.; Li,Y. -M. ChemistrySelect 2020, 5,1359.
[12]
(h) Guo, Y.; Liu, C.; Song, H.; Wang,F. -L.; Zou, Y.; Wu,Q. -Y.; Hu,H. -G. RSC Adv. 2017, 7,2110.
[12]
(i) Huang,D. -L.; Bai,J. -S.; Wu, M.; Wang, X.; Riedl, B.; Pook, E.; Alt, C.; Erny, M.; Li,Y. -M.; Bierer, D.; Shi, J.; Fang,G. -M. Chem. Commun. 2019, 55,2821.
[12]
(j) Wang,F. -L.; Guo, Y.; Li,S. -J.; Guo,Q. -X.; Shi, J.; Li,Y. -M. Org. Biomol. Chem. 2015, 13,6286.
[12]
(k) Wang, T.; Kong,Y. -F.; Xu, Y.; Fan, J.; Xu,H. -J.; Bierer, D.; Wang, J.; Shi, J.; Li,Y. -M. Tetrahedron Lett. 2017, 58,3970.
[13]
(a) Zheng,J. -S.; Tang, S.; Qi,Y. -K.; Wang,Z. -P.; Liu, L. Nat. Protoc. 2013, 8,2483.
[13]
(b) Qi,Y. -K.; Tang, S.; Huang,Y. -C.; Pan, M.; Zheng,J. -S.; Liu, L. Org. Biomol. Chem. 2016, 14,4194.
[13]
(c) Qi,Y. -K.; He,Q. -Q.; Ai,H. -S.; Guo, J.; Li,J. -B. Chem. Commun. 2017, 53,4148.
[13]
(d) Qi,Y. -K.; He,Q. -Q.; Ai,H. -S.; Li,J. -B.; Zheng,J. -S. Synlett 2017, 28,1907.
[13]
(e) Li,J. -B.; Qi,Y. -K.; He,Q. -Q.; Ai,H. -S.; Liu,S. -L.; Wang,J. -X.; Zheng,J. -S.; Liu, L.; Tian, C. Cell Res. 2018, 28,257.
[13]
(f) Qi,Y. -K.; Ai,H. -S.; Li,Y. -M.; Yan, B. Front. Chem. 2018, 6,19.
[14]
(a) Li, Z.; Zhang, B.; Zuo, C.; Liu, L. Chin. J. Org. Chem. 2018, 38,2412 (in Chinese).
[14]
( 黎子琛, 张宝昌, 左冲, 刘磊, 有机化学, 2018, 38,2412.)
[14]
(b) Qi,Y. -K.; Si,Y. -Y.; Du,S. -S.; Liang, J.; Wang,K. W.; Zheng,J. -S. Sci. China: Chem. 2019, 62,299.
[14]
(c) Zhang, B.; Deng, Q.; Zuo, C.; Yan, B.; Zuo, C.; Cao,X. -X.; Zhu,T. F.; Zheng,J. -S.; Liu, L. Angew. Chem.,Int. Ed. 2019, 58,12231.
[14]
(d) Zuo, C.; Shi,W. -W.; Chen,X. -X.; Glatz, M.; Riedl, B.; Flamme, I.; Pook, E.; Wang, J.; Fang,G. -M.; Bierer, D.; Liu, L. Sci. China: Chem. 2019, 62,1371.
[14]
(e) Zhang, B.; Li, Y.; Shi, W.; Wang, T.; Zhang, F.; Liu, L. Chem. Res. Chin. Univ. 2020, 36,733.
[14]
(f) Tang, S.; Zheng, J.; Yang, K.; Liu, L. Acta Chim. Sinica 2012, 70,1471 (in Chinese).
[14]
( 唐姗, 郑基深, 杨可, 刘磊, 化学学报, 2012, 70,1471.)
[14]
(g) Fang,G. -M.; Li,Y. -M.; Shen, F.; Huang,Y. -C.; Li,J. -B.; Lin, Y.; Cui,H. -K.; Liu, L. Angew. Chem.,Int. Ed. 2011, 50,7645.
文章导航

/